MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance 4stufen
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 116329.67060000 (ANTIGONE) 109309.63000000 (BARON) 112657.25790000 (COUENNE) 16581.78314000 (LINDO) 101961.49360000 (SCIP) 10613.09212000 (SHOT) |
Sourceⓘ | GAMS Client |
Applicationⓘ | four membrane pipe modules in feed-and-bleed coupling |
Added to libraryⓘ | 01 May 2001 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 149 |
#Binary Variablesⓘ | 48 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 50 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 6 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 98 |
#Linear Constraintsⓘ | 64 |
#Quadratic Constraintsⓘ | 13 |
#Polynomial Constraintsⓘ | 8 |
#Signomial Constraintsⓘ | 9 |
#General Nonlinear Constraintsⓘ | 4 |
Operands in Gen. Nonlin. Functionsⓘ | div log |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 312 |
#Nonlinear Nonzeros in Jacobianⓘ | 87 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 135 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 21 |
#Blocks in Hessian of Lagrangianⓘ | 13 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 26 |
Average blocksize in Hessian of Lagrangianⓘ | 3.846154 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.1357e-08 |
Maximal coefficientⓘ | 7.9365e+03 |
Infeasibility of initial pointⓘ | 8.067e+04 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 99 95 4 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 150 102 48 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 319 232 87 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,b96,b97,b98,b99,b100,b101,b102,b103 ,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116 ,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129 ,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142 ,b143,objvar,x145,x146,x147,x148,x149,x150; Positive Variables x2,x8,x9,x10,x11,x20,x21,x22,x23,x24,x25,x26,x27,x76,x77 ,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87,x88,x89,x90,x91,x92,x93,x94 ,x95,x145,x146,x147,x148,x149,x150; Binary Variables b96,b97,b98,b99,b100,b101,b102,b103,b104,b105,b106,b107,b108 ,b109,b110,b111,b112,b113,b114,b115,b116,b117,b118,b119,b120,b121 ,b122,b123,b124,b125,b126,b127,b128,b129,b130,b131,b132,b133,b134 ,b135,b136,b137,b138,b139,b140,b141,b142,b143; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99; e1.. objvar - x145 - x146 - x147 - x148 - x149 - x150 =E= 3271.22725820856; e2.. x8 =E= 1800; e3.. x12 =E= 5; e4.. x2 - x24 - x25 - x26 - x27 =E= 0; e5.. -(x28*x24 + x29*x25 + x30*x26 + x31*x27)/x2 + x3 =E= 0; e6.. x1 - x19 =E= 0; e7.. x23 =E= 100; e8.. x9 - x16 =E= 0; e9.. x13 - x20 =E= 0; e10.. x5 - x32 - x33 - x34 - x35 =E= 0; e11.. x6 - x36 - x37 - x38 - x39 =E= 0; e12.. x7 - x92 - x93 - x94 - x95 =E= 0; e13.. x4 - x72 - x73 - x74 - x75 =E= 0; e14.. x10 - x17 =E= 0; e15.. x14 - x21 =E= 0; e16.. x11 - x18 =E= 0; e17.. x15 - x22 =E= 0; e18.. 2.77777777777778e-7*x40/log((x44 - x28)/(x20 - x28)) - x56 =E= 0; e19.. 2.77777777777778e-7*x41/log((x45 - x29)/(x21 - x29)) - x57 =E= 0; e20.. 2.77777777777778e-7*x42/log((x46 - x30)/(x22 - x30)) - x58 =E= 0; e21.. 2.77777777777778e-7*x43/log((x47 - x31)/(x23 - x31)) - x59 =E= 0; e22.. 50*x28 - x44 =E= 0; e23.. 50*x29 - x45 =E= 0; e24.. 50*x30 - x46 =E= 0; e25.. 50*x31 - x47 =E= 0; e26.. x40 - 65.38084341288*x48 + 65.38084341288*x60 =E= 0; e27.. x41 - 65.38084341288*x49 + 65.38084341288*x61 =E= 0; e28.. x42 - 65.38084341288*x50 + 65.38084341288*x62 =E= 0; e29.. x43 - 65.38084341288*x51 + 65.38084341288*x63 =E= 0; e30.. - x60 + x64 - x68 =E= 0; e31.. - x61 + x65 - x69 =E= 0; e32.. - x62 + x66 - x70 =E= 0; e33.. - x63 + x67 - x71 =E= 0; e34.. -1e-5*(12.09*sqr(x44) + 3.66*x44 - 0.08*x44**3 + 0.0002592*x44**4) + x64 =E= 0; e35.. -1e-5*(12.09*sqr(x45) + 3.66*x45 - 0.08*x45**3 + 0.0002592*x45**4) + x65 =E= 0; e36.. -1e-5*(12.09*sqr(x46) + 3.66*x46 - 0.08*x46**3 + 0.0002592*x46**4) + x66 =E= 0; e37.. -1e-5*(12.09*sqr(x47) + 3.66*x47 - 0.08*x47**3 + 0.0002592*x47**4) + x67 =E= 0; e38.. -1e-5*(12.09*sqr(x28) + 3.66*x28 - 0.08*x28**3 + 0.0002592*x28**4) + x68 =E= 0; e39.. -1e-5*(12.09*sqr(x29) + 3.66*x29 - 0.08*x29**3 + 0.0002592*x29**4) + x69 =E= 0; e40.. -1e-5*(12.09*sqr(x30) + 3.66*x30 - 0.08*x30**3 + 0.0002592*x30**4) + x70 =E= 0; e41.. -1e-5*(12.09*sqr(x31) + 3.66*x31 - 0.08*x31**3 + 0.0002592*x31**4) + x71 =E= 0; e42.. -1.13572384718704e-8*(7936.50793650794*x52)**0.75 + x56 =E= 0; e43.. -1.13572384718704e-8*(7936.50793650794*x53)**0.75 + x57 =E= 0; e44.. -1.13572384718704e-8*(7936.50793650794*x54)**0.75 + x58 =E= 0; e45.. -1.13572384718704e-8*(7936.50793650794*x55)**0.75 + x59 =E= 0; e46.. - x8 + x16 + x24 =E= 0; e47.. - x9 + x17 + x25 =E= 0; e48.. - x10 + x18 + x26 =E= 0; e49.. - x11 + x19 + x27 =E= 0; e50.. x12*x8 - (x20*x16 + x28*x24) =E= 0; e51.. x13*x9 - (x21*x17 + x29*x25) =E= 0; e52.. x14*x10 - (x22*x18 + x30*x26) =E= 0; e53.. x15*x11 - (x23*x19 + x31*x27) =E= 0; e54.. -2.77777777777778e-5*x48*x8 + x84 =E= 0; e55.. -2.77777777777778e-5*x49*x9 + x85 =E= 0; e56.. -2.77777777777778e-5*x50*x10 + x86 =E= 0; e57.. -2.77777777777778e-5*x51*x11 + x87 =E= 0; e58.. -x24/x40 + x72 =E= 0; e59.. -x25/x41 + x73 =E= 0; e60.. -x26/x42 + x74 =E= 0; e61.. -x27/x43 + x75 =E= 0; e62.. x32 - 20*x72 =E= 0; e63.. x33 - 20*x73 =E= 0; e64.. x34 - 20*x74 =E= 0; e65.. x35 - 20*x75 =E= 0; e66.. - 373.932*x52 + x76 =E= 0; e67.. - 373.932*x53 + x77 =E= 0; e68.. - 373.932*x54 + x78 =E= 0; e69.. - 373.932*x55 + x79 =E= 0; e70.. -x32*x76 + x80 =E= 0; e71.. -x33*x77 + x81 =E= 0; e72.. -x34*x78 + x82 =E= 0; e73.. -x35*x79 + x83 =E= 0; e74.. - 5.55555555555556E-6*x80 + x88 =E= 0; e75.. - 5.55555555555556E-6*x81 + x89 =E= 0; e76.. - 5.55555555555556E-6*x82 + x90 =E= 0; e77.. - 5.55555555555556E-6*x83 + x91 =E= 0; e78.. - 1.58730158730159*x84 - 1.58730158730159*x88 + x92 =E= 0; e79.. - 1.58730158730159*x85 - 1.58730158730159*x89 + x93 =E= 0; e80.. - 1.58730158730159*x86 - 1.58730158730159*x90 + x94 =E= 0; e81.. - 1.58730158730159*x87 - 1.58730158730159*x91 + x95 =E= 0; e82.. x36 - 0.909090909090909*x88 =G= 0; e83.. x37 - 0.909090909090909*x89 =G= 0; e84.. x38 - 0.909090909090909*x90 =G= 0; e85.. x39 - 0.909090909090909*x91 =G= 0; e86.. x32 - b96 - 2*b100 - 4*b104 - 8*b108 - 16*b112 - 32*b116 - 64*b120 - 128*b124 =E= 0; e87.. x33 - b97 - 2*b101 - 4*b105 - 8*b109 - 16*b113 - 32*b117 - 64*b121 - 128*b125 =E= 0; e88.. x34 - b98 - 2*b102 - 4*b106 - 8*b110 - 16*b114 - 32*b118 - 64*b122 - 128*b126 =E= 0; e89.. x35 - b99 - 2*b103 - 4*b107 - 8*b111 - 16*b115 - 32*b119 - 64*b123 - 128*b127 =E= 0; e90.. x36 - b128 - 2*b132 - 4*b136 - 8*b140 =E= 0; e91.. x37 - b129 - 2*b133 - 4*b137 - 8*b141 =E= 0; e92.. x38 - b130 - 2*b134 - 4*b138 - 8*b142 =E= 0; e93.. x39 - b131 - 2*b135 - 4*b139 - 8*b143 =E= 0; e94.. x145 =E= 5047.03634123606; e95.. - 292.07386234005*x6 + x146 =E= 0; e96.. - 2103.94993266178*x7 + x149 =E= 0; e97.. - 45.7380420143865*x2 + x147 =E= 0; e98.. -4.57380420143865*x2*x3 + x148 =E= 0; e99.. - 764.973851088085*x4 + x150 =E= 0; * set non-default bounds x1.lo = 10; x3.lo = 1; x4.lo = 1; x5.lo = 2; x6.lo = 1; x7.lo = 0.1675; x12.lo = 5; x13.lo = 5; x14.lo = 5; x15.lo = 5; x16.lo = 1; x17.lo = 1; x18.lo = 1; x19.lo = 1; x28.lo = 0.001; x29.lo = 0.001; x30.lo = 0.001; x31.lo = 0.001; x32.lo = 1; x33.lo = 1; x34.lo = 1; x35.lo = 1; x36.lo = 1; x37.lo = 1; x38.lo = 1; x39.lo = 1; x40.lo = 1; x41.lo = 1; x42.lo = 1; x43.lo = 1; x44.lo = 0.01; x45.lo = 0.01; x46.lo = 0.01; x47.lo = 0.01; x48.lo = 2; x48.up = 6; x49.lo = 2; x49.up = 6; x50.lo = 2; x50.up = 6; x51.lo = 2; x51.up = 6; x52.lo = 1.26; x52.up = 6; x53.lo = 1.26; x53.up = 6; x54.lo = 1.26; x54.up = 6; x55.lo = 1.26; x55.up = 6; x56.lo = 1.13E-5; x57.lo = 1.13E-5; x58.lo = 1.13E-5; x59.lo = 1.13E-5; x60.lo = 2.9E-7; x61.lo = 2.9E-7; x62.lo = 2.9E-7; x63.lo = 2.9E-7; x64.lo = 3E-7; x65.lo = 3E-7; x66.lo = 3E-7; x67.lo = 3E-7; x68.lo = 3E-7; x69.lo = 3E-7; x70.lo = 3E-7; x71.lo = 3E-7; x72.lo = 0.05; x73.lo = 0.05; x74.lo = 0.05; x75.lo = 0.05; * set non-default levels x1.l = 36.344; x2.l = 1763.656; x3.l = 3.042; x4.l = 10.808; x5.l = 216.161; x6.l = 1.225; x7.l = 2.542; x8.l = 1800; x9.l = 241.731; x10.l = 158.011; x11.l = 88.847; x13.l = 18.176; x14.l = 26.048; x15.l = 43.416; x16.l = 241.731; x17.l = 158.011; x18.l = 88.847; x19.l = 36.344; x20.l = 18.176; x21.l = 26.048; x22.l = 43.416; x23.l = 100; x24.l = 1558.269; x25.l = 83.72; x26.l = 69.163; x27.l = 52.503; x28.l = 2.956; x29.l = 3.317; x30.l = 3.737; x31.l = 4.248; x32.l = 176.503; x33.l = 10.861; x34.l = 11.542; x35.l = 17.256; x40.l = 176.572; x41.l = 154.169; x42.l = 119.85; x43.l = 60.852; x44.l = 147.804; x45.l = 165.863; x46.l = 186.858; x47.l = 212.397; x48.l = 4; x49.l = 4; x50.l = 4; x51.l = 4; x52.l = 3; x53.l = 3; x54.l = 3; x55.l = 3; x56.l = 2.1769E-5; x57.l = 2.1769E-5; x58.l = 2.1769E-5; x59.l = 2.1769E-5; x60.l = 1.299; x61.l = 1.642; x62.l = 2.167; x63.l = 3.069; x64.l = 1.3; x65.l = 1.643; x66.l = 2.169; x67.l = 3.072; x68.l = 0.001; x69.l = 0.001; x70.l = 0.002; x71.l = 0.002; x72.l = 8.825; x73.l = 0.543; x74.l = 0.577; x75.l = 0.863; x76.l = 1121.796; x77.l = 1121.796; x78.l = 1121.796; x79.l = 1121.796; x80.l = 198000; x81.l = 12183.696; x82.l = 12947.373; x83.l = 19357.594; x84.l = 0.2; x85.l = 0.027; x86.l = 0.018; x87.l = 0.01; x88.l = 1.1; x89.l = 0.068; x90.l = 0.072; x91.l = 0.108; x92.l = 2.063; x93.l = 0.15; x94.l = 0.142; x95.l = 0.186; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91