MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance autocorr_bern20-10
degree-four model for low autocorrelated binary sequences This instance arises in theoretical physics. Determining a ground state in the so-called Bernasconi model amounts to minimizing a degree-four energy function over variables taking values in {+1,-1}. Here, the energy function is expressed in 0/1 variables. The model contains symmetries, leading to multiple optimum solutions.
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -2936.00000300 (ANTIGONE) -2936.00000300 (BARON) -2936.00000000 (COUENNE) -2936.00000000 (LINDO) -2936.00000000 (PQCR) -2936.00000000 (SCIP) -2936.00000000 (SHOT) |
Referencesⓘ | Liers, Frauke, Marinari, Enzo, Pagacz, Ulrike, Ricci-Tersenghi, Federico, and Schmitz, Vera, A Non-Disordered Glassy Model with a Tunable Interaction Range, Journal of Statistical Mechanics: Theory and Experiment, 2010, L05003. |
Sourceⓘ | POLIP instance autocorrelated_sequences/bernasconi.20.10 |
Applicationⓘ | Autocorrelated Sequences |
Added to libraryⓘ | 26 Feb 2014 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 21 |
#Binary Variablesⓘ | 20 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 20 |
#Nonlinear Binary Variablesⓘ | 20 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 1 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 1 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 21 |
#Nonlinear Nonzeros in Jacobianⓘ | 20 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 270 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 20 |
Maximal blocksize in Hessian of Lagrangianⓘ | 20 |
Average blocksize in Hessian of Lagrangianⓘ | 20.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 1.7600e+03 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 1 0 0 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 21 1 20 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 21 1 20 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,objvar; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17 ,b18,b19,b20; Equations e1; e1.. 64*b1*b2*b3*b4 + 64*b1*b2*b4*b5 + 64*b1*b2*b5*b6 + 64*b1*b2*b6*b7 + 64*b1* b2*b7*b8 + 64*b1*b2*b8*b9 + 64*b1*b2*b9*b10 + 64*b1*b3*b4*b6 + 64*b1*b3*b5 *b7 + 64*b1*b3*b6*b8 + 64*b1*b3*b7*b9 + 64*b1*b3*b8*b10 + 64*b1*b4*b5*b8 + 64*b1*b4*b6*b9 + 64*b1*b4*b7*b10 + 64*b1*b5*b6*b10 + 128*b2*b3*b4*b5 + 128*b2*b3*b5*b6 + 128*b2*b3*b6*b7 + 128*b2*b3*b7*b8 + 128*b2*b3*b8*b9 + 128*b2*b3*b9*b10 + 64*b2*b3*b10*b11 + 128*b2*b4*b5*b7 + 128*b2*b4*b6*b8 + 128*b2*b4*b7*b9 + 128*b2*b4*b8*b10 + 64*b2*b4*b9*b11 + 128*b2*b5*b6*b9 + 128*b2*b5*b7*b10 + 64*b2*b5*b8*b11 + 64*b2*b6*b7*b11 + 192*b3*b4*b5*b6 + 192*b3*b4*b6*b7 + 192*b3*b4*b7*b8 + 192*b3*b4*b8*b9 + 192*b3*b4*b9*b10 + 128*b3*b4*b10*b11 + 64*b3*b4*b11*b12 + 192*b3*b5*b6*b8 + 192*b3*b5*b7*b9 + 192*b3*b5*b8*b10 + 128*b3*b5*b9*b11 + 64*b3*b5*b10*b12 + 192*b3*b6*b7* b10 + 128*b3*b6*b8*b11 + 64*b3*b6*b9*b12 + 64*b3*b7*b8*b12 + 256*b4*b5*b6* b7 + 256*b4*b5*b7*b8 + 256*b4*b5*b8*b9 + 256*b4*b5*b9*b10 + 192*b4*b5*b10* b11 + 128*b4*b5*b11*b12 + 64*b4*b5*b12*b13 + 256*b4*b6*b7*b9 + 256*b4*b6* b8*b10 + 192*b4*b6*b9*b11 + 128*b4*b6*b10*b12 + 64*b4*b6*b11*b13 + 192*b4* b7*b8*b11 + 128*b4*b7*b9*b12 + 64*b4*b7*b10*b13 + 64*b4*b8*b9*b13 + 320*b5 *b6*b7*b8 + 320*b5*b6*b8*b9 + 320*b5*b6*b9*b10 + 256*b5*b6*b10*b11 + 192* b5*b6*b11*b12 + 128*b5*b6*b12*b13 + 64*b5*b6*b13*b14 + 320*b5*b7*b8*b10 + 256*b5*b7*b9*b11 + 192*b5*b7*b10*b12 + 128*b5*b7*b11*b13 + 64*b5*b7*b12* b14 + 192*b5*b8*b9*b12 + 128*b5*b8*b10*b13 + 64*b5*b8*b11*b14 + 64*b5*b9* b10*b14 + 384*b6*b7*b8*b9 + 384*b6*b7*b9*b10 + 320*b6*b7*b10*b11 + 256*b6* b7*b11*b12 + 192*b6*b7*b12*b13 + 128*b6*b7*b13*b14 + 64*b6*b7*b14*b15 + 320*b6*b8*b9*b11 + 256*b6*b8*b10*b12 + 192*b6*b8*b11*b13 + 128*b6*b8*b12* b14 + 64*b6*b8*b13*b15 + 192*b6*b9*b10*b13 + 128*b6*b9*b11*b14 + 64*b6*b9* b12*b15 + 64*b6*b10*b11*b15 + 448*b7*b8*b9*b10 + 384*b7*b8*b10*b11 + 320* b7*b8*b11*b12 + 256*b7*b8*b12*b13 + 192*b7*b8*b13*b14 + 128*b7*b8*b14*b15 + 64*b7*b8*b15*b16 + 320*b7*b9*b10*b12 + 256*b7*b9*b11*b13 + 192*b7*b9* b12*b14 + 128*b7*b9*b13*b15 + 64*b7*b9*b14*b16 + 192*b7*b10*b11*b14 + 128* b7*b10*b12*b15 + 64*b7*b10*b13*b16 + 64*b7*b11*b12*b16 + 448*b8*b9*b10*b11 + 384*b8*b9*b11*b12 + 320*b8*b9*b12*b13 + 256*b8*b9*b13*b14 + 192*b8*b9* b14*b15 + 128*b8*b9*b15*b16 + 64*b8*b9*b16*b17 + 320*b8*b10*b11*b13 + 256* b8*b10*b12*b14 + 192*b8*b10*b13*b15 + 128*b8*b10*b14*b16 + 64*b8*b10*b15* b17 + 192*b8*b11*b12*b15 + 128*b8*b11*b13*b16 + 64*b8*b11*b14*b17 + 64*b8* b12*b13*b17 + 448*b9*b10*b11*b12 + 384*b9*b10*b12*b13 + 320*b9*b10*b13*b14 + 256*b9*b10*b14*b15 + 192*b9*b10*b15*b16 + 128*b9*b10*b16*b17 + 64*b9* b10*b17*b18 + 320*b9*b11*b12*b14 + 256*b9*b11*b13*b15 + 192*b9*b11*b14*b16 + 128*b9*b11*b15*b17 + 64*b9*b11*b16*b18 + 192*b9*b12*b13*b16 + 128*b9* b12*b14*b17 + 64*b9*b12*b15*b18 + 64*b9*b13*b14*b18 + 448*b10*b11*b12*b13 + 384*b10*b11*b13*b14 + 320*b10*b11*b14*b15 + 256*b10*b11*b15*b16 + 192* b10*b11*b16*b17 + 128*b10*b11*b17*b18 + 64*b10*b11*b18*b19 + 320*b10*b12* b13*b15 + 256*b10*b12*b14*b16 + 192*b10*b12*b15*b17 + 128*b10*b12*b16*b18 + 64*b10*b12*b17*b19 + 192*b10*b13*b14*b17 + 128*b10*b13*b15*b18 + 64*b10 *b13*b16*b19 + 64*b10*b14*b15*b19 + 448*b11*b12*b13*b14 + 384*b11*b12*b14* b15 + 320*b11*b12*b15*b16 + 256*b11*b12*b16*b17 + 192*b11*b12*b17*b18 + 128*b11*b12*b18*b19 + 64*b11*b12*b19*b20 + 320*b11*b13*b14*b16 + 256*b11* b13*b15*b17 + 192*b11*b13*b16*b18 + 128*b11*b13*b17*b19 + 64*b11*b13*b18* b20 + 192*b11*b14*b15*b18 + 128*b11*b14*b16*b19 + 64*b11*b14*b17*b20 + 64* b11*b15*b16*b20 + 384*b12*b13*b14*b15 + 320*b12*b13*b15*b16 + 256*b12*b13* b16*b17 + 192*b12*b13*b17*b18 + 128*b12*b13*b18*b19 + 64*b12*b13*b19*b20 + 256*b12*b14*b15*b17 + 192*b12*b14*b16*b18 + 128*b12*b14*b17*b19 + 64* b12*b14*b18*b20 + 128*b12*b15*b16*b19 + 64*b12*b15*b17*b20 + 320*b13*b14* b15*b16 + 256*b13*b14*b16*b17 + 192*b13*b14*b17*b18 + 128*b13*b14*b18*b19 + 64*b13*b14*b19*b20 + 192*b13*b15*b16*b18 + 128*b13*b15*b17*b19 + 64*b13 *b15*b18*b20 + 64*b13*b16*b17*b20 + 256*b14*b15*b16*b17 + 192*b14*b15*b17* b18 + 128*b14*b15*b18*b19 + 64*b14*b15*b19*b20 + 128*b14*b16*b17*b19 + 64* b14*b16*b18*b20 + 192*b15*b16*b17*b18 + 128*b15*b16*b18*b19 + 64*b15*b16* b19*b20 + 64*b15*b17*b18*b20 + 128*b16*b17*b18*b19 + 64*b16*b17*b19*b20 + 64*b17*b18*b19*b20 - 32*b1*b2*b3 - 64*b1*b2*b4 - 64*b1*b2*b5 - 64*b1*b2*b6 - 64*b1*b2*b7 - 64*b1*b2*b8 - 64*b1*b2*b9 - 32*b1*b2*b10 - 64*b1*b3*b4 - 32*b1*b3*b5 - 64*b1*b3*b6 - 64*b1*b3*b7 - 64*b1*b3*b8 - 32*b1*b3*b9 - 32* b1*b3*b10 - 64*b1*b4*b5 - 64*b1*b4*b6 - 32*b1*b4*b7 - 32*b1*b4*b8 - 32*b1* b4*b9 - 32*b1*b4*b10 - 64*b1*b5*b6 - 32*b1*b5*b7 - 32*b1*b5*b8 - 32*b1*b5* b10 - 32*b1*b6*b7 - 32*b1*b6*b8 - 32*b1*b6*b9 - 32*b1*b6*b10 - 32*b1*b7*b8 - 32*b1*b7*b9 - 32*b1*b7*b10 - 32*b1*b8*b9 - 32*b1*b8*b10 - 32*b1*b9*b10 - 96*b2*b3*b4 - 128*b2*b3*b5 - 128*b2*b3*b6 - 128*b2*b3*b7 - 128*b2*b3*b8 - 128*b2*b3*b9 - 96*b2*b3*b10 - 32*b2*b3*b11 - 160*b2*b4*b5 - 64*b2*b4*b6 - 128*b2*b4*b7 - 128*b2*b4*b8 - 96*b2*b4*b9 - 64*b2*b4*b10 - 32*b2*b4*b11 - 160*b2*b5*b6 - 128*b2*b5*b7 - 32*b2*b5*b8 - 64*b2*b5*b9 - 64*b2*b5*b10 - 32*b2*b5*b11 - 128*b2*b6*b7 - 64*b2*b6*b8 - 64*b2*b6*b9 - 32*b2*b6*b11 - 96*b2*b7*b8 - 64*b2*b7*b9 - 64*b2*b7*b10 - 32*b2*b7*b11 - 96*b2*b8*b9 - 64*b2*b8*b10 - 32*b2*b8*b11 - 96*b2*b9*b10 - 32*b2*b9*b11 - 32*b2*b10* b11 - 160*b3*b4*b5 - 224*b3*b4*b6 - 192*b3*b4*b7 - 192*b3*b4*b8 - 192*b3* b4*b9 - 160*b3*b4*b10 - 96*b3*b4*b11 - 32*b3*b4*b12 - 256*b3*b5*b6 - 128* b3*b5*b7 - 192*b3*b5*b8 - 160*b3*b5*b9 - 128*b3*b5*b10 - 64*b3*b5*b11 - 32 *b3*b5*b12 - 256*b3*b6*b7 - 192*b3*b6*b8 - 32*b3*b6*b9 - 96*b3*b6*b10 - 64 *b3*b6*b11 - 32*b3*b6*b12 - 192*b3*b7*b8 - 128*b3*b7*b9 - 96*b3*b7*b10 - 32*b3*b7*b12 - 160*b3*b8*b9 - 128*b3*b8*b10 - 64*b3*b8*b11 - 32*b3*b8*b12 - 160*b3*b9*b10 - 64*b3*b9*b11 - 32*b3*b9*b12 - 96*b3*b10*b11 - 32*b3*b10 *b12 - 32*b3*b11*b12 - 224*b4*b5*b6 - 320*b4*b5*b7 - 288*b4*b5*b8 - 256*b4 *b5*b9 - 224*b4*b5*b10 - 160*b4*b5*b11 - 96*b4*b5*b12 - 32*b4*b5*b13 - 352 *b4*b6*b7 - 192*b4*b6*b8 - 256*b4*b6*b9 - 192*b4*b6*b10 - 128*b4*b6*b11 - 64*b4*b6*b12 - 32*b4*b6*b13 - 320*b4*b7*b8 - 256*b4*b7*b9 - 64*b4*b7*b10 - 96*b4*b7*b11 - 64*b4*b7*b12 - 32*b4*b7*b13 - 256*b4*b8*b9 - 192*b4*b8* b10 - 96*b4*b8*b11 - 32*b4*b8*b13 - 224*b4*b9*b10 - 128*b4*b9*b11 - 64*b4* b9*b12 - 32*b4*b9*b13 - 160*b4*b10*b11 - 64*b4*b10*b12 - 32*b4*b10*b13 - 96*b4*b11*b12 - 32*b4*b11*b13 - 32*b4*b12*b13 - 288*b5*b6*b7 - 416*b5*b6* b8 - 384*b5*b6*b9 - 320*b5*b6*b10 - 224*b5*b6*b11 - 160*b5*b6*b12 - 96*b5* b6*b13 - 32*b5*b6*b14 - 448*b5*b7*b8 - 224*b5*b7*b9 - 320*b5*b7*b10 - 192* b5*b7*b11 - 128*b5*b7*b12 - 64*b5*b7*b13 - 32*b5*b7*b14 - 384*b5*b8*b9 - 320*b5*b8*b10 - 64*b5*b8*b11 - 96*b5*b8*b12 - 64*b5*b8*b13 - 32*b5*b8*b14 - 320*b5*b9*b10 - 192*b5*b9*b11 - 96*b5*b9*b12 - 32*b5*b9*b14 - 224*b5* b10*b11 - 128*b5*b10*b12 - 64*b5*b10*b13 - 32*b5*b10*b14 - 160*b5*b11*b12 - 64*b5*b11*b13 - 32*b5*b11*b14 - 96*b5*b12*b13 - 32*b5*b12*b14 - 32*b5* b13*b14 - 352*b6*b7*b8 - 512*b6*b7*b9 - 448*b6*b7*b10 - 320*b6*b7*b11 - 224*b6*b7*b12 - 160*b6*b7*b13 - 96*b6*b7*b14 - 32*b6*b7*b15 - 512*b6*b8*b9 - 256*b6*b8*b10 - 320*b6*b8*b11 - 192*b6*b8*b12 - 128*b6*b8*b13 - 64*b6* b8*b14 - 32*b6*b8*b15 - 448*b6*b9*b10 - 320*b6*b9*b11 - 64*b6*b9*b12 - 96* b6*b9*b13 - 64*b6*b9*b14 - 32*b6*b9*b15 - 320*b6*b10*b11 - 192*b6*b10*b12 - 96*b6*b10*b13 - 32*b6*b10*b15 - 224*b6*b11*b12 - 128*b6*b11*b13 - 64*b6 *b11*b14 - 32*b6*b11*b15 - 160*b6*b12*b13 - 64*b6*b12*b14 - 32*b6*b12*b15 - 96*b6*b13*b14 - 32*b6*b13*b15 - 32*b6*b14*b15 - 416*b7*b8*b9 - 576*b7* b8*b10 - 448*b7*b8*b11 - 320*b7*b8*b12 - 224*b7*b8*b13 - 160*b7*b8*b14 - 96*b7*b8*b15 - 32*b7*b8*b16 - 576*b7*b9*b10 - 256*b7*b9*b11 - 320*b7*b9* b12 - 192*b7*b9*b13 - 128*b7*b9*b14 - 64*b7*b9*b15 - 32*b7*b9*b16 - 448*b7 *b10*b11 - 320*b7*b10*b12 - 64*b7*b10*b13 - 96*b7*b10*b14 - 64*b7*b10*b15 - 32*b7*b10*b16 - 320*b7*b11*b12 - 192*b7*b11*b13 - 96*b7*b11*b14 - 32*b7 *b11*b16 - 224*b7*b12*b13 - 128*b7*b12*b14 - 64*b7*b12*b15 - 32*b7*b12*b16 - 160*b7*b13*b14 - 64*b7*b13*b15 - 32*b7*b13*b16 - 96*b7*b14*b15 - 32*b7* b14*b16 - 32*b7*b15*b16 - 448*b8*b9*b10 - 576*b8*b9*b11 - 448*b8*b9*b12 - 320*b8*b9*b13 - 224*b8*b9*b14 - 160*b8*b9*b15 - 96*b8*b9*b16 - 32*b8*b9* b17 - 576*b8*b10*b11 - 256*b8*b10*b12 - 320*b8*b10*b13 - 192*b8*b10*b14 - 128*b8*b10*b15 - 64*b8*b10*b16 - 32*b8*b10*b17 - 448*b8*b11*b12 - 320*b8* b11*b13 - 64*b8*b11*b14 - 96*b8*b11*b15 - 64*b8*b11*b16 - 32*b8*b11*b17 - 320*b8*b12*b13 - 192*b8*b12*b14 - 96*b8*b12*b15 - 32*b8*b12*b17 - 224*b8* b13*b14 - 128*b8*b13*b15 - 64*b8*b13*b16 - 32*b8*b13*b17 - 160*b8*b14*b15 - 64*b8*b14*b16 - 32*b8*b14*b17 - 96*b8*b15*b16 - 32*b8*b15*b17 - 32*b8* b16*b17 - 448*b9*b10*b11 - 576*b9*b10*b12 - 448*b9*b10*b13 - 320*b9*b10* b14 - 224*b9*b10*b15 - 160*b9*b10*b16 - 96*b9*b10*b17 - 32*b9*b10*b18 - 576*b9*b11*b12 - 256*b9*b11*b13 - 320*b9*b11*b14 - 192*b9*b11*b15 - 128*b9 *b11*b16 - 64*b9*b11*b17 - 32*b9*b11*b18 - 448*b9*b12*b13 - 320*b9*b12*b14 - 64*b9*b12*b15 - 96*b9*b12*b16 - 64*b9*b12*b17 - 32*b9*b12*b18 - 320*b9* b13*b14 - 192*b9*b13*b15 - 96*b9*b13*b16 - 32*b9*b13*b18 - 224*b9*b14*b15 - 128*b9*b14*b16 - 64*b9*b14*b17 - 32*b9*b14*b18 - 160*b9*b15*b16 - 64*b9 *b15*b17 - 32*b9*b15*b18 - 96*b9*b16*b17 - 32*b9*b16*b18 - 32*b9*b17*b18 - 448*b10*b11*b12 - 576*b10*b11*b13 - 448*b10*b11*b14 - 320*b10*b11*b15 - 224*b10*b11*b16 - 160*b10*b11*b17 - 96*b10*b11*b18 - 32*b10*b11*b19 - 576*b10*b12*b13 - 256*b10*b12*b14 - 320*b10*b12*b15 - 192*b10*b12*b16 - 128*b10*b12*b17 - 64*b10*b12*b18 - 32*b10*b12*b19 - 448*b10*b13*b14 - 320* b10*b13*b15 - 64*b10*b13*b16 - 96*b10*b13*b17 - 64*b10*b13*b18 - 32*b10* b13*b19 - 320*b10*b14*b15 - 192*b10*b14*b16 - 96*b10*b14*b17 - 32*b10*b14* b19 - 224*b10*b15*b16 - 128*b10*b15*b17 - 64*b10*b15*b18 - 32*b10*b15*b19 - 160*b10*b16*b17 - 64*b10*b16*b18 - 32*b10*b16*b19 - 96*b10*b17*b18 - 32 *b10*b17*b19 - 32*b10*b18*b19 - 448*b11*b12*b13 - 576*b11*b12*b14 - 448* b11*b12*b15 - 320*b11*b12*b16 - 224*b11*b12*b17 - 160*b11*b12*b18 - 96*b11 *b12*b19 - 32*b11*b12*b20 - 576*b11*b13*b14 - 256*b11*b13*b15 - 320*b11* b13*b16 - 192*b11*b13*b17 - 128*b11*b13*b18 - 64*b11*b13*b19 - 32*b11*b13* b20 - 448*b11*b14*b15 - 320*b11*b14*b16 - 64*b11*b14*b17 - 96*b11*b14*b18 - 64*b11*b14*b19 - 32*b11*b14*b20 - 320*b11*b15*b16 - 192*b11*b15*b17 - 96*b11*b15*b18 - 32*b11*b15*b20 - 224*b11*b16*b17 - 128*b11*b16*b18 - 64* b11*b16*b19 - 32*b11*b16*b20 - 160*b11*b17*b18 - 64*b11*b17*b19 - 32*b11* b17*b20 - 96*b11*b18*b19 - 32*b11*b18*b20 - 32*b11*b19*b20 - 416*b12*b13* b14 - 512*b12*b13*b15 - 384*b12*b13*b16 - 256*b12*b13*b17 - 160*b12*b13* b18 - 96*b12*b13*b19 - 32*b12*b13*b20 - 512*b12*b14*b15 - 224*b12*b14*b16 - 256*b12*b14*b17 - 128*b12*b14*b18 - 64*b12*b14*b19 - 32*b12*b14*b20 - 384*b12*b15*b16 - 256*b12*b15*b17 - 32*b12*b15*b18 - 64*b12*b15*b19 - 32* b12*b15*b20 - 256*b12*b16*b17 - 160*b12*b16*b18 - 64*b12*b16*b19 - 192*b12 *b17*b18 - 96*b12*b17*b19 - 32*b12*b17*b20 - 128*b12*b18*b19 - 32*b12*b18* b20 - 64*b12*b19*b20 - 352*b13*b14*b15 - 448*b13*b14*b16 - 320*b13*b14*b17 - 192*b13*b14*b18 - 96*b13*b14*b19 - 32*b13*b14*b20 - 416*b13*b15*b16 - 192*b13*b15*b17 - 192*b13*b15*b18 - 64*b13*b15*b19 - 32*b13*b15*b20 - 288* b13*b16*b17 - 192*b13*b16*b18 - 32*b13*b16*b19 - 32*b13*b16*b20 - 192*b13* b17*b18 - 128*b13*b17*b19 - 32*b13*b17*b20 - 128*b13*b18*b19 - 64*b13*b18* b20 - 64*b13*b19*b20 - 288*b14*b15*b16 - 352*b14*b15*b17 - 256*b14*b15*b18 - 128*b14*b15*b19 - 32*b14*b15*b20 - 320*b14*b16*b17 - 128*b14*b16*b18 - 128*b14*b16*b19 - 32*b14*b16*b20 - 192*b14*b17*b18 - 128*b14*b17*b19 - 32* b14*b17*b20 - 128*b14*b18*b19 - 64*b14*b18*b20 - 64*b14*b19*b20 - 224*b15* b16*b17 - 256*b15*b16*b18 - 160*b15*b16*b19 - 64*b15*b16*b20 - 224*b15*b17 *b18 - 64*b15*b17*b19 - 64*b15*b17*b20 - 128*b15*b18*b19 - 64*b15*b18*b20 - 64*b15*b19*b20 - 160*b16*b17*b18 - 160*b16*b17*b19 - 64*b16*b17*b20 - 128*b16*b18*b19 - 32*b16*b18*b20 - 64*b16*b19*b20 - 96*b17*b18*b19 - 64* b17*b18*b20 - 64*b17*b19*b20 - 32*b18*b19*b20 + 112*b1*b2 + 104*b1*b3 + 96 *b1*b4 + 88*b1*b5 + 96*b1*b6 + 88*b1*b7 + 80*b1*b8 + 72*b1*b9 + 64*b1*b10 + 224*b2*b3 + 224*b2*b4 + 208*b2*b5 + 192*b2*b6 + 208*b2*b7 + 192*b2*b8 + 176*b2*b9 + 144*b2*b10 + 64*b2*b11 + 352*b3*b4 + 344*b3*b5 + 336*b3*b6 + 328*b3*b7 + 336*b3*b8 + 296*b3*b9 + 256*b3*b10 + 144*b3*b11 + 64*b3*b12 + 496*b4*b5 + 480*b4*b6 + 464*b4*b7 + 464*b4*b8 + 448*b4*b9 + 384*b4*b10 + 256*b4*b11 + 144*b4*b12 + 64*b4*b13 + 656*b5*b6 + 616*b5*b7 + 592*b5*b8 + 568*b5*b9 + 544*b5*b10 + 384*b5*b11 + 256*b5*b12 + 144*b5*b13 + 64*b5* b14 + 800*b6*b7 + 736*b6*b8 + 704*b6*b9 + 656*b6*b10 + 544*b6*b11 + 384*b6 *b12 + 256*b6*b13 + 144*b6*b14 + 64*b6*b15 + 928*b7*b8 + 856*b7*b9 + 800* b7*b10 + 656*b7*b11 + 544*b7*b12 + 384*b7*b13 + 256*b7*b14 + 144*b7*b15 + 64*b7*b16 + 1040*b8*b9 + 960*b8*b10 + 800*b8*b11 + 656*b8*b12 + 544*b8*b13 + 384*b8*b14 + 256*b8*b15 + 144*b8*b16 + 64*b8*b17 + 1152*b9*b10 + 960*b9 *b11 + 800*b9*b12 + 656*b9*b13 + 544*b9*b14 + 384*b9*b15 + 256*b9*b16 + 144*b9*b17 + 64*b9*b18 + 1152*b10*b11 + 960*b10*b12 + 800*b10*b13 + 656* b10*b14 + 544*b10*b15 + 384*b10*b16 + 256*b10*b17 + 144*b10*b18 + 64*b10* b19 + 1152*b11*b12 + 960*b11*b13 + 800*b11*b14 + 656*b11*b15 + 544*b11*b16 + 384*b11*b17 + 256*b11*b18 + 144*b11*b19 + 64*b11*b20 + 1040*b12*b13 + 856*b12*b14 + 704*b12*b15 + 568*b12*b16 + 448*b12*b17 + 296*b12*b18 + 176* b12*b19 + 72*b12*b20 + 928*b13*b14 + 736*b13*b15 + 592*b13*b16 + 464*b13* b17 + 336*b13*b18 + 192*b13*b19 + 80*b13*b20 + 800*b14*b15 + 616*b14*b16 + 464*b14*b17 + 328*b14*b18 + 208*b14*b19 + 88*b14*b20 + 656*b15*b16 + 480*b15*b17 + 336*b15*b18 + 192*b15*b19 + 96*b15*b20 + 496*b16*b17 + 344* b16*b18 + 208*b16*b19 + 88*b16*b20 + 352*b17*b18 + 224*b17*b19 + 96*b17* b20 + 224*b18*b19 + 104*b18*b20 + 112*b19*b20 - 144*b1 - 312*b2 - 496*b3 - 688*b4 - 880*b5 - 1072*b6 - 1264*b7 - 1448*b8 - 1616*b9 - 1760*b10 - 1760*b11 - 1616*b12 - 1448*b13 - 1264*b14 - 1072*b15 - 880*b16 - 688*b17 - 496*b18 - 312*b19 - 144*b20 - objvar =L= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91