MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance autocorr_bern30-08
degree-four model for low autocorrelated binary sequences This instance arises in theoretical physics. Determining a ground state in the so-called Bernasconi model amounts to minimizing a degree-four energy function over variables taking values in {+1,-1}. Here, the energy function is expressed in 0/1 variables. The model contains symmetries, leading to multiple optimum solutions.
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -3220.00000000 (ANTIGONE) -2952.00000300 (BARON) -4120.00000000 (COUENNE) -5636.00000000 (LINDO) -2952.00000000 (PQCR) -2952.00000000 (SCIP) -6698.22222200 (SHOT) |
Referencesⓘ | Liers, Frauke, Marinari, Enzo, Pagacz, Ulrike, Ricci-Tersenghi, Federico, and Schmitz, Vera, A Non-Disordered Glassy Model with a Tunable Interaction Range, Journal of Statistical Mechanics: Theory and Experiment, 2010, L05003. |
Sourceⓘ | POLIP instance autocorrelated_sequences/bernasconi.30.8 |
Applicationⓘ | Autocorrelated Sequences |
Added to libraryⓘ | 26 Feb 2014 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 31 |
#Binary Variablesⓘ | 30 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 30 |
#Nonlinear Binary Variablesⓘ | 30 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 1 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 1 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 31 |
#Nonlinear Nonzeros in Jacobianⓘ | 30 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 364 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 30 |
Maximal blocksize in Hessian of Lagrangianⓘ | 30 |
Average blocksize in Hessian of Lagrangianⓘ | 30.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 8.0000e+02 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 1 0 0 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 31 1 30 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 31 1 30 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,objvar; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17 ,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30; Equations e1; e1.. 64*b1*b2*b3*b4 + 64*b1*b2*b4*b5 + 64*b1*b2*b5*b6 + 64*b1*b2*b6*b7 + 64*b1* b2*b7*b8 + 64*b1*b3*b4*b6 + 64*b1*b3*b5*b7 + 64*b1*b3*b6*b8 + 64*b1*b4*b5* b8 + 128*b2*b3*b4*b5 + 128*b2*b3*b5*b6 + 128*b2*b3*b6*b7 + 128*b2*b3*b7*b8 + 64*b2*b3*b8*b9 + 128*b2*b4*b5*b7 + 128*b2*b4*b6*b8 + 64*b2*b4*b7*b9 + 64*b2*b5*b6*b9 + 192*b3*b4*b5*b6 + 192*b3*b4*b6*b7 + 192*b3*b4*b7*b8 + 128 *b3*b4*b8*b9 + 64*b3*b4*b9*b10 + 192*b3*b5*b6*b8 + 128*b3*b5*b7*b9 + 64*b3 *b5*b8*b10 + 64*b3*b6*b7*b10 + 256*b4*b5*b6*b7 + 256*b4*b5*b7*b8 + 192*b4* b5*b8*b9 + 128*b4*b5*b9*b10 + 64*b4*b5*b10*b11 + 192*b4*b6*b7*b9 + 128*b4* b6*b8*b10 + 64*b4*b6*b9*b11 + 64*b4*b7*b8*b11 + 320*b5*b6*b7*b8 + 256*b5* b6*b8*b9 + 192*b5*b6*b9*b10 + 128*b5*b6*b10*b11 + 64*b5*b6*b11*b12 + 192* b5*b7*b8*b10 + 128*b5*b7*b9*b11 + 64*b5*b7*b10*b12 + 64*b5*b8*b9*b12 + 320 *b6*b7*b8*b9 + 256*b6*b7*b9*b10 + 192*b6*b7*b10*b11 + 128*b6*b7*b11*b12 + 64*b6*b7*b12*b13 + 192*b6*b8*b9*b11 + 128*b6*b8*b10*b12 + 64*b6*b8*b11*b13 + 64*b6*b9*b10*b13 + 320*b7*b8*b9*b10 + 256*b7*b8*b10*b11 + 192*b7*b8*b11 *b12 + 128*b7*b8*b12*b13 + 64*b7*b8*b13*b14 + 192*b7*b9*b10*b12 + 128*b7* b9*b11*b13 + 64*b7*b9*b12*b14 + 64*b7*b10*b11*b14 + 320*b8*b9*b10*b11 + 256*b8*b9*b11*b12 + 192*b8*b9*b12*b13 + 128*b8*b9*b13*b14 + 64*b8*b9*b14* b15 + 192*b8*b10*b11*b13 + 128*b8*b10*b12*b14 + 64*b8*b10*b13*b15 + 64*b8* b11*b12*b15 + 320*b9*b10*b11*b12 + 256*b9*b10*b12*b13 + 192*b9*b10*b13*b14 + 128*b9*b10*b14*b15 + 64*b9*b10*b15*b16 + 192*b9*b11*b12*b14 + 128*b9* b11*b13*b15 + 64*b9*b11*b14*b16 + 64*b9*b12*b13*b16 + 320*b10*b11*b12*b13 + 256*b10*b11*b13*b14 + 192*b10*b11*b14*b15 + 128*b10*b11*b15*b16 + 64* b10*b11*b16*b17 + 192*b10*b12*b13*b15 + 128*b10*b12*b14*b16 + 64*b10*b12* b15*b17 + 64*b10*b13*b14*b17 + 320*b11*b12*b13*b14 + 256*b11*b12*b14*b15 + 192*b11*b12*b15*b16 + 128*b11*b12*b16*b17 + 64*b11*b12*b17*b18 + 192* b11*b13*b14*b16 + 128*b11*b13*b15*b17 + 64*b11*b13*b16*b18 + 64*b11*b14* b15*b18 + 320*b12*b13*b14*b15 + 256*b12*b13*b15*b16 + 192*b12*b13*b16*b17 + 128*b12*b13*b17*b18 + 64*b12*b13*b18*b19 + 192*b12*b14*b15*b17 + 128* b12*b14*b16*b18 + 64*b12*b14*b17*b19 + 64*b12*b15*b16*b19 + 320*b13*b14* b15*b16 + 256*b13*b14*b16*b17 + 192*b13*b14*b17*b18 + 128*b13*b14*b18*b19 + 64*b13*b14*b19*b20 + 192*b13*b15*b16*b18 + 128*b13*b15*b17*b19 + 64*b13 *b15*b18*b20 + 64*b13*b16*b17*b20 + 320*b14*b15*b16*b17 + 256*b14*b15*b17* b18 + 192*b14*b15*b18*b19 + 128*b14*b15*b19*b20 + 64*b14*b15*b20*b21 + 192 *b14*b16*b17*b19 + 128*b14*b16*b18*b20 + 64*b14*b16*b19*b21 + 64*b14*b17* b18*b21 + 320*b15*b16*b17*b18 + 256*b15*b16*b18*b19 + 192*b15*b16*b19*b20 + 128*b15*b16*b20*b21 + 64*b15*b16*b21*b22 + 192*b15*b17*b18*b20 + 128* b15*b17*b19*b21 + 64*b15*b17*b20*b22 + 64*b15*b18*b19*b22 + 320*b16*b17* b18*b19 + 256*b16*b17*b19*b20 + 192*b16*b17*b20*b21 + 128*b16*b17*b21*b22 + 64*b16*b17*b22*b23 + 192*b16*b18*b19*b21 + 128*b16*b18*b20*b22 + 64*b16 *b18*b21*b23 + 64*b16*b19*b20*b23 + 320*b17*b18*b19*b20 + 256*b17*b18*b20* b21 + 192*b17*b18*b21*b22 + 128*b17*b18*b22*b23 + 64*b17*b18*b23*b24 + 192 *b17*b19*b20*b22 + 128*b17*b19*b21*b23 + 64*b17*b19*b22*b24 + 64*b17*b20* b21*b24 + 320*b18*b19*b20*b21 + 256*b18*b19*b21*b22 + 192*b18*b19*b22*b23 + 128*b18*b19*b23*b24 + 64*b18*b19*b24*b25 + 192*b18*b20*b21*b23 + 128* b18*b20*b22*b24 + 64*b18*b20*b23*b25 + 64*b18*b21*b22*b25 + 320*b19*b20* b21*b22 + 256*b19*b20*b22*b23 + 192*b19*b20*b23*b24 + 128*b19*b20*b24*b25 + 64*b19*b20*b25*b26 + 192*b19*b21*b22*b24 + 128*b19*b21*b23*b25 + 64*b19 *b21*b24*b26 + 64*b19*b22*b23*b26 + 320*b20*b21*b22*b23 + 256*b20*b21*b23* b24 + 192*b20*b21*b24*b25 + 128*b20*b21*b25*b26 + 64*b20*b21*b26*b27 + 192 *b20*b22*b23*b25 + 128*b20*b22*b24*b26 + 64*b20*b22*b25*b27 + 64*b20*b23* b24*b27 + 320*b21*b22*b23*b24 + 256*b21*b22*b24*b25 + 192*b21*b22*b25*b26 + 128*b21*b22*b26*b27 + 64*b21*b22*b27*b28 + 192*b21*b23*b24*b26 + 128* b21*b23*b25*b27 + 64*b21*b23*b26*b28 + 64*b21*b24*b25*b28 + 320*b22*b23* b24*b25 + 256*b22*b23*b25*b26 + 192*b22*b23*b26*b27 + 128*b22*b23*b27*b28 + 64*b22*b23*b28*b29 + 192*b22*b24*b25*b27 + 128*b22*b24*b26*b28 + 64*b22 *b24*b27*b29 + 64*b22*b25*b26*b29 + 320*b23*b24*b25*b26 + 256*b23*b24*b26* b27 + 192*b23*b24*b27*b28 + 128*b23*b24*b28*b29 + 64*b23*b24*b29*b30 + 192 *b23*b25*b26*b28 + 128*b23*b25*b27*b29 + 64*b23*b25*b28*b30 + 64*b23*b26* b27*b30 + 256*b24*b25*b26*b27 + 192*b24*b25*b27*b28 + 128*b24*b25*b28*b29 + 64*b24*b25*b29*b30 + 128*b24*b26*b27*b29 + 64*b24*b26*b28*b30 + 192*b25 *b26*b27*b28 + 128*b25*b26*b28*b29 + 64*b25*b26*b29*b30 + 64*b25*b27*b28* b30 + 128*b26*b27*b28*b29 + 64*b26*b27*b29*b30 + 64*b27*b28*b29*b30 - 32* b1*b2*b3 - 64*b1*b2*b4 - 64*b1*b2*b5 - 64*b1*b2*b6 - 64*b1*b2*b7 - 32*b1* b2*b8 - 64*b1*b3*b4 - 32*b1*b3*b5 - 64*b1*b3*b6 - 32*b1*b3*b7 - 32*b1*b3* b8 - 64*b1*b4*b5 - 32*b1*b4*b6 - 32*b1*b4*b8 - 32*b1*b5*b6 - 32*b1*b5*b7 - 32*b1*b5*b8 - 32*b1*b6*b7 - 32*b1*b6*b8 - 32*b1*b7*b8 - 96*b2*b3*b4 - 128*b2*b3*b5 - 128*b2*b3*b6 - 128*b2*b3*b7 - 96*b2*b3*b8 - 32*b2*b3*b9 - 160*b2*b4*b5 - 64*b2*b4*b6 - 96*b2*b4*b7 - 64*b2*b4*b8 - 32*b2*b4*b9 - 128 *b2*b5*b6 - 64*b2*b5*b7 - 32*b2*b5*b9 - 96*b2*b6*b7 - 64*b2*b6*b8 - 32*b2* b6*b9 - 96*b2*b7*b8 - 32*b2*b7*b9 - 32*b2*b8*b9 - 160*b3*b4*b5 - 224*b3*b4 *b6 - 192*b3*b4*b7 - 160*b3*b4*b8 - 96*b3*b4*b9 - 32*b3*b4*b10 - 256*b3*b5 *b6 - 96*b3*b5*b7 - 128*b3*b5*b8 - 64*b3*b5*b9 - 32*b3*b5*b10 - 192*b3*b6* b7 - 128*b3*b6*b8 - 32*b3*b6*b10 - 160*b3*b7*b8 - 64*b3*b7*b9 - 32*b3*b7* b10 - 96*b3*b8*b9 - 32*b3*b8*b10 - 32*b3*b9*b10 - 224*b4*b5*b6 - 320*b4*b5 *b7 - 256*b4*b5*b8 - 160*b4*b5*b9 - 96*b4*b5*b10 - 32*b4*b5*b11 - 320*b4* b6*b7 - 128*b4*b6*b8 - 128*b4*b6*b9 - 64*b4*b6*b10 - 32*b4*b6*b11 - 256*b4 *b7*b8 - 128*b4*b7*b9 - 32*b4*b7*b11 - 160*b4*b8*b9 - 64*b4*b8*b10 - 32*b4 *b8*b11 - 96*b4*b9*b10 - 32*b4*b9*b11 - 32*b4*b10*b11 - 288*b5*b6*b7 - 384 *b5*b6*b8 - 256*b5*b6*b9 - 160*b5*b6*b10 - 96*b5*b6*b11 - 32*b5*b6*b12 - 384*b5*b7*b8 - 128*b5*b7*b9 - 128*b5*b7*b10 - 64*b5*b7*b11 - 32*b5*b7*b12 - 256*b5*b8*b9 - 128*b5*b8*b10 - 32*b5*b8*b12 - 160*b5*b9*b10 - 64*b5*b9* b11 - 32*b5*b9*b12 - 96*b5*b10*b11 - 32*b5*b10*b12 - 32*b5*b11*b12 - 320* b6*b7*b8 - 384*b6*b7*b9 - 256*b6*b7*b10 - 160*b6*b7*b11 - 96*b6*b7*b12 - 32*b6*b7*b13 - 384*b6*b8*b9 - 128*b6*b8*b10 - 128*b6*b8*b11 - 64*b6*b8*b12 - 32*b6*b8*b13 - 256*b6*b9*b10 - 128*b6*b9*b11 - 32*b6*b9*b13 - 160*b6* b10*b11 - 64*b6*b10*b12 - 32*b6*b10*b13 - 96*b6*b11*b12 - 32*b6*b11*b13 - 32*b6*b12*b13 - 320*b7*b8*b9 - 384*b7*b8*b10 - 256*b7*b8*b11 - 160*b7*b8* b12 - 96*b7*b8*b13 - 32*b7*b8*b14 - 384*b7*b9*b10 - 128*b7*b9*b11 - 128*b7 *b9*b12 - 64*b7*b9*b13 - 32*b7*b9*b14 - 256*b7*b10*b11 - 128*b7*b10*b12 - 32*b7*b10*b14 - 160*b7*b11*b12 - 64*b7*b11*b13 - 32*b7*b11*b14 - 96*b7*b12 *b13 - 32*b7*b12*b14 - 32*b7*b13*b14 - 320*b8*b9*b10 - 384*b8*b9*b11 - 256 *b8*b9*b12 - 160*b8*b9*b13 - 96*b8*b9*b14 - 32*b8*b9*b15 - 384*b8*b10*b11 - 128*b8*b10*b12 - 128*b8*b10*b13 - 64*b8*b10*b14 - 32*b8*b10*b15 - 256* b8*b11*b12 - 128*b8*b11*b13 - 32*b8*b11*b15 - 160*b8*b12*b13 - 64*b8*b12* b14 - 32*b8*b12*b15 - 96*b8*b13*b14 - 32*b8*b13*b15 - 32*b8*b14*b15 - 320* b9*b10*b11 - 384*b9*b10*b12 - 256*b9*b10*b13 - 160*b9*b10*b14 - 96*b9*b10* b15 - 32*b9*b10*b16 - 384*b9*b11*b12 - 128*b9*b11*b13 - 128*b9*b11*b14 - 64*b9*b11*b15 - 32*b9*b11*b16 - 256*b9*b12*b13 - 128*b9*b12*b14 - 32*b9* b12*b16 - 160*b9*b13*b14 - 64*b9*b13*b15 - 32*b9*b13*b16 - 96*b9*b14*b15 - 32*b9*b14*b16 - 32*b9*b15*b16 - 320*b10*b11*b12 - 384*b10*b11*b13 - 256 *b10*b11*b14 - 160*b10*b11*b15 - 96*b10*b11*b16 - 32*b10*b11*b17 - 384*b10 *b12*b13 - 128*b10*b12*b14 - 128*b10*b12*b15 - 64*b10*b12*b16 - 32*b10*b12 *b17 - 256*b10*b13*b14 - 128*b10*b13*b15 - 32*b10*b13*b17 - 160*b10*b14* b15 - 64*b10*b14*b16 - 32*b10*b14*b17 - 96*b10*b15*b16 - 32*b10*b15*b17 - 32*b10*b16*b17 - 320*b11*b12*b13 - 384*b11*b12*b14 - 256*b11*b12*b15 - 160 *b11*b12*b16 - 96*b11*b12*b17 - 32*b11*b12*b18 - 384*b11*b13*b14 - 128*b11 *b13*b15 - 128*b11*b13*b16 - 64*b11*b13*b17 - 32*b11*b13*b18 - 256*b11*b14 *b15 - 128*b11*b14*b16 - 32*b11*b14*b18 - 160*b11*b15*b16 - 64*b11*b15*b17 - 32*b11*b15*b18 - 96*b11*b16*b17 - 32*b11*b16*b18 - 32*b11*b17*b18 - 320 *b12*b13*b14 - 384*b12*b13*b15 - 256*b12*b13*b16 - 160*b12*b13*b17 - 96* b12*b13*b18 - 32*b12*b13*b19 - 384*b12*b14*b15 - 128*b12*b14*b16 - 128*b12 *b14*b17 - 64*b12*b14*b18 - 32*b12*b14*b19 - 256*b12*b15*b16 - 128*b12*b15 *b17 - 32*b12*b15*b19 - 160*b12*b16*b17 - 64*b12*b16*b18 - 32*b12*b16*b19 - 96*b12*b17*b18 - 32*b12*b17*b19 - 32*b12*b18*b19 - 320*b13*b14*b15 - 384*b13*b14*b16 - 256*b13*b14*b17 - 160*b13*b14*b18 - 96*b13*b14*b19 - 32* b13*b14*b20 - 384*b13*b15*b16 - 128*b13*b15*b17 - 128*b13*b15*b18 - 64*b13 *b15*b19 - 32*b13*b15*b20 - 256*b13*b16*b17 - 128*b13*b16*b18 - 32*b13*b16 *b20 - 160*b13*b17*b18 - 64*b13*b17*b19 - 32*b13*b17*b20 - 96*b13*b18*b19 - 32*b13*b18*b20 - 32*b13*b19*b20 - 320*b14*b15*b16 - 384*b14*b15*b17 - 256*b14*b15*b18 - 160*b14*b15*b19 - 96*b14*b15*b20 - 32*b14*b15*b21 - 384* b14*b16*b17 - 128*b14*b16*b18 - 128*b14*b16*b19 - 64*b14*b16*b20 - 32*b14* b16*b21 - 256*b14*b17*b18 - 128*b14*b17*b19 - 32*b14*b17*b21 - 160*b14*b18 *b19 - 64*b14*b18*b20 - 32*b14*b18*b21 - 96*b14*b19*b20 - 32*b14*b19*b21 - 32*b14*b20*b21 - 320*b15*b16*b17 - 384*b15*b16*b18 - 256*b15*b16*b19 - 160*b15*b16*b20 - 96*b15*b16*b21 - 32*b15*b16*b22 - 384*b15*b17*b18 - 128* b15*b17*b19 - 128*b15*b17*b20 - 64*b15*b17*b21 - 32*b15*b17*b22 - 256*b15* b18*b19 - 128*b15*b18*b20 - 32*b15*b18*b22 - 160*b15*b19*b20 - 64*b15*b19* b21 - 32*b15*b19*b22 - 96*b15*b20*b21 - 32*b15*b20*b22 - 32*b15*b21*b22 - 320*b16*b17*b18 - 384*b16*b17*b19 - 256*b16*b17*b20 - 160*b16*b17*b21 - 96 *b16*b17*b22 - 32*b16*b17*b23 - 384*b16*b18*b19 - 128*b16*b18*b20 - 128* b16*b18*b21 - 64*b16*b18*b22 - 32*b16*b18*b23 - 256*b16*b19*b20 - 128*b16* b19*b21 - 32*b16*b19*b23 - 160*b16*b20*b21 - 64*b16*b20*b22 - 32*b16*b20* b23 - 96*b16*b21*b22 - 32*b16*b21*b23 - 32*b16*b22*b23 - 320*b17*b18*b19 - 384*b17*b18*b20 - 256*b17*b18*b21 - 160*b17*b18*b22 - 96*b17*b18*b23 - 32*b17*b18*b24 - 384*b17*b19*b20 - 128*b17*b19*b21 - 128*b17*b19*b22 - 64* b17*b19*b23 - 32*b17*b19*b24 - 256*b17*b20*b21 - 128*b17*b20*b22 - 32*b17* b20*b24 - 160*b17*b21*b22 - 64*b17*b21*b23 - 32*b17*b21*b24 - 96*b17*b22* b23 - 32*b17*b22*b24 - 32*b17*b23*b24 - 320*b18*b19*b20 - 384*b18*b19*b21 - 256*b18*b19*b22 - 160*b18*b19*b23 - 96*b18*b19*b24 - 32*b18*b19*b25 - 384*b18*b20*b21 - 128*b18*b20*b22 - 128*b18*b20*b23 - 64*b18*b20*b24 - 32* b18*b20*b25 - 256*b18*b21*b22 - 128*b18*b21*b23 - 32*b18*b21*b25 - 160*b18 *b22*b23 - 64*b18*b22*b24 - 32*b18*b22*b25 - 96*b18*b23*b24 - 32*b18*b23* b25 - 32*b18*b24*b25 - 320*b19*b20*b21 - 384*b19*b20*b22 - 256*b19*b20*b23 - 160*b19*b20*b24 - 96*b19*b20*b25 - 32*b19*b20*b26 - 384*b19*b21*b22 - 128*b19*b21*b23 - 128*b19*b21*b24 - 64*b19*b21*b25 - 32*b19*b21*b26 - 256* b19*b22*b23 - 128*b19*b22*b24 - 32*b19*b22*b26 - 160*b19*b23*b24 - 64*b19* b23*b25 - 32*b19*b23*b26 - 96*b19*b24*b25 - 32*b19*b24*b26 - 32*b19*b25* b26 - 320*b20*b21*b22 - 384*b20*b21*b23 - 256*b20*b21*b24 - 160*b20*b21* b25 - 96*b20*b21*b26 - 32*b20*b21*b27 - 384*b20*b22*b23 - 128*b20*b22*b24 - 128*b20*b22*b25 - 64*b20*b22*b26 - 32*b20*b22*b27 - 256*b20*b23*b24 - 128*b20*b23*b25 - 32*b20*b23*b27 - 160*b20*b24*b25 - 64*b20*b24*b26 - 32* b20*b24*b27 - 96*b20*b25*b26 - 32*b20*b25*b27 - 32*b20*b26*b27 - 320*b21* b22*b23 - 384*b21*b22*b24 - 256*b21*b22*b25 - 160*b21*b22*b26 - 96*b21*b22 *b27 - 32*b21*b22*b28 - 384*b21*b23*b24 - 128*b21*b23*b25 - 128*b21*b23* b26 - 64*b21*b23*b27 - 32*b21*b23*b28 - 256*b21*b24*b25 - 128*b21*b24*b26 - 32*b21*b24*b28 - 160*b21*b25*b26 - 64*b21*b25*b27 - 32*b21*b25*b28 - 96 *b21*b26*b27 - 32*b21*b26*b28 - 32*b21*b27*b28 - 320*b22*b23*b24 - 384*b22 *b23*b25 - 256*b22*b23*b26 - 160*b22*b23*b27 - 96*b22*b23*b28 - 32*b22*b23 *b29 - 384*b22*b24*b25 - 128*b22*b24*b26 - 128*b22*b24*b27 - 64*b22*b24* b28 - 32*b22*b24*b29 - 256*b22*b25*b26 - 128*b22*b25*b27 - 32*b22*b25*b29 - 160*b22*b26*b27 - 64*b22*b26*b28 - 32*b22*b26*b29 - 96*b22*b27*b28 - 32 *b22*b27*b29 - 32*b22*b28*b29 - 320*b23*b24*b25 - 384*b23*b24*b26 - 256* b23*b24*b27 - 160*b23*b24*b28 - 96*b23*b24*b29 - 32*b23*b24*b30 - 384*b23* b25*b26 - 128*b23*b25*b27 - 128*b23*b25*b28 - 64*b23*b25*b29 - 32*b23*b25* b30 - 256*b23*b26*b27 - 128*b23*b26*b28 - 32*b23*b26*b30 - 160*b23*b27*b28 - 64*b23*b27*b29 - 32*b23*b27*b30 - 96*b23*b28*b29 - 32*b23*b28*b30 - 32* b23*b29*b30 - 288*b24*b25*b26 - 320*b24*b25*b27 - 192*b24*b25*b28 - 96*b24 *b25*b29 - 32*b24*b25*b30 - 320*b24*b26*b27 - 96*b24*b26*b28 - 64*b24*b26* b29 - 32*b24*b26*b30 - 192*b24*b27*b28 - 96*b24*b27*b29 - 128*b24*b28*b29 - 32*b24*b28*b30 - 64*b24*b29*b30 - 224*b25*b26*b27 - 256*b25*b26*b28 - 128*b25*b26*b29 - 32*b25*b26*b30 - 224*b25*b27*b28 - 64*b25*b27*b29 - 32* b25*b27*b30 - 128*b25*b28*b29 - 64*b25*b28*b30 - 64*b25*b29*b30 - 160*b26* b27*b28 - 160*b26*b27*b29 - 64*b26*b27*b30 - 128*b26*b28*b29 - 32*b26*b28* b30 - 64*b26*b29*b30 - 96*b27*b28*b29 - 64*b27*b28*b30 - 64*b27*b29*b30 - 32*b28*b29*b30 + 80*b1*b2 + 72*b1*b3 + 64*b1*b4 + 72*b1*b5 + 64*b1*b6 + 56 *b1*b7 + 48*b1*b8 + 160*b2*b3 + 160*b2*b4 + 144*b2*b5 + 160*b2*b6 + 144*b2 *b7 + 112*b2*b8 + 48*b2*b9 + 256*b3*b4 + 248*b3*b5 + 256*b3*b6 + 248*b3*b7 + 208*b3*b8 + 112*b3*b9 + 48*b3*b10 + 368*b4*b5 + 336*b4*b6 + 336*b4*b7 + 320*b4*b8 + 208*b4*b9 + 112*b4*b10 + 48*b4*b11 + 464*b5*b6 + 424*b5*b7 + 400*b5*b8 + 320*b5*b9 + 208*b5*b10 + 112*b5*b11 + 48*b5*b12 + 544*b6*b7 + 496*b6*b8 + 400*b6*b9 + 320*b6*b10 + 208*b6*b11 + 112*b6*b12 + 48*b6* b13 + 624*b7*b8 + 496*b7*b9 + 400*b7*b10 + 320*b7*b11 + 208*b7*b12 + 112* b7*b13 + 48*b7*b14 + 624*b8*b9 + 496*b8*b10 + 400*b8*b11 + 320*b8*b12 + 208*b8*b13 + 112*b8*b14 + 48*b8*b15 + 624*b9*b10 + 496*b9*b11 + 400*b9*b12 + 320*b9*b13 + 208*b9*b14 + 112*b9*b15 + 48*b9*b16 + 624*b10*b11 + 496* b10*b12 + 400*b10*b13 + 320*b10*b14 + 208*b10*b15 + 112*b10*b16 + 48*b10* b17 + 624*b11*b12 + 496*b11*b13 + 400*b11*b14 + 320*b11*b15 + 208*b11*b16 + 112*b11*b17 + 48*b11*b18 + 624*b12*b13 + 496*b12*b14 + 400*b12*b15 + 320*b12*b16 + 208*b12*b17 + 112*b12*b18 + 48*b12*b19 + 624*b13*b14 + 496* b13*b15 + 400*b13*b16 + 320*b13*b17 + 208*b13*b18 + 112*b13*b19 + 48*b13* b20 + 624*b14*b15 + 496*b14*b16 + 400*b14*b17 + 320*b14*b18 + 208*b14*b19 + 112*b14*b20 + 48*b14*b21 + 624*b15*b16 + 496*b15*b17 + 400*b15*b18 + 320*b15*b19 + 208*b15*b20 + 112*b15*b21 + 48*b15*b22 + 624*b16*b17 + 496* b16*b18 + 400*b16*b19 + 320*b16*b20 + 208*b16*b21 + 112*b16*b22 + 48*b16* b23 + 624*b17*b18 + 496*b17*b19 + 400*b17*b20 + 320*b17*b21 + 208*b17*b22 + 112*b17*b23 + 48*b17*b24 + 624*b18*b19 + 496*b18*b20 + 400*b18*b21 + 320*b18*b22 + 208*b18*b23 + 112*b18*b24 + 48*b18*b25 + 624*b19*b20 + 496* b19*b21 + 400*b19*b22 + 320*b19*b23 + 208*b19*b24 + 112*b19*b25 + 48*b19* b26 + 624*b20*b21 + 496*b20*b22 + 400*b20*b23 + 320*b20*b24 + 208*b20*b25 + 112*b20*b26 + 48*b20*b27 + 624*b21*b22 + 496*b21*b23 + 400*b21*b24 + 320*b21*b25 + 208*b21*b26 + 112*b21*b27 + 48*b21*b28 + 624*b22*b23 + 496* b22*b24 + 400*b22*b25 + 320*b22*b26 + 208*b22*b27 + 112*b22*b28 + 48*b22* b29 + 624*b23*b24 + 496*b23*b25 + 400*b23*b26 + 320*b23*b27 + 208*b23*b28 + 112*b23*b29 + 48*b23*b30 + 544*b24*b25 + 424*b24*b26 + 336*b24*b27 + 248*b24*b28 + 144*b24*b29 + 56*b24*b30 + 464*b25*b26 + 336*b25*b27 + 256* b25*b28 + 160*b25*b29 + 64*b25*b30 + 368*b26*b27 + 248*b26*b28 + 144*b26* b29 + 72*b26*b30 + 256*b27*b28 + 160*b27*b29 + 64*b27*b30 + 160*b28*b29 + 72*b28*b30 + 80*b29*b30 - 84*b1 - 184*b2 - 292*b3 - 400*b4 - 508*b5 - 616* b6 - 716*b7 - 800*b8 - 800*b9 - 800*b10 - 800*b11 - 800*b12 - 800*b13 - 800*b14 - 800*b15 - 800*b16 - 800*b17 - 800*b18 - 800*b19 - 800*b20 - 800* b21 - 800*b22 - 800*b23 - 716*b24 - 616*b25 - 508*b26 - 400*b27 - 292*b28 - 184*b29 - 84*b30 - objvar =L= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91