MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance autocorr_bern45-05
degree-four model for low autocorrelated binary sequences This instance arises in theoretical physics. Determining a ground state in the so-called Bernasconi model amounts to minimizing a degree-four energy function over variables taking values in {+1,-1}. Here, the energy function is expressed in 0/1 variables. The model contains symmetries, leading to multiple optimum solutions.
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -1170.40000000 (ANTIGONE) -1098.77359500 (BARON) -2610.00000000 (COUENNE) -1068.00000000 (DynamicProgramming) -2220.00000000 (LINDO) -1068.00000000 (PQCR) -1192.48228200 (SCIP) -2708.22222200 (SHOT) |
Referencesⓘ | Liers, Frauke, Marinari, Enzo, Pagacz, Ulrike, Ricci-Tersenghi, Federico, and Schmitz, Vera, A Non-Disordered Glassy Model with a Tunable Interaction Range, Journal of Statistical Mechanics: Theory and Experiment, 2010, L05003. |
Sourceⓘ | POLIP instance autocorrelated_sequences/bernasconi.45.5 |
Applicationⓘ | Autocorrelated Sequences |
Added to libraryⓘ | 26 Feb 2014 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 46 |
#Binary Variablesⓘ | 45 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 45 |
#Nonlinear Binary Variablesⓘ | 45 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 1 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 1 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 46 |
#Nonlinear Nonzeros in Jacobianⓘ | 45 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 340 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 45 |
Maximal blocksize in Hessian of Lagrangianⓘ | 45 |
Average blocksize in Hessian of Lagrangianⓘ | 45.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 1.2800e+02 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 1 0 0 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 46 1 45 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 46 1 45 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36 ,b37,b38,b39,b40,b41,b42,b43,b44,b45,objvar; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17 ,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34 ,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45; Equations e1; e1.. 64*b1*b2*b3*b4 + 64*b1*b2*b4*b5 + 128*b2*b3*b4*b5 + 64*b2*b3*b5*b6 + 128* b3*b4*b5*b6 + 64*b3*b4*b6*b7 + 128*b4*b5*b6*b7 + 64*b4*b5*b7*b8 + 128*b5* b6*b7*b8 + 64*b5*b6*b8*b9 + 128*b6*b7*b8*b9 + 64*b6*b7*b9*b10 + 128*b7*b8* b9*b10 + 64*b7*b8*b10*b11 + 128*b8*b9*b10*b11 + 64*b8*b9*b11*b12 + 128*b9* b10*b11*b12 + 64*b9*b10*b12*b13 + 128*b10*b11*b12*b13 + 64*b10*b11*b13*b14 + 128*b11*b12*b13*b14 + 64*b11*b12*b14*b15 + 128*b12*b13*b14*b15 + 64*b12 *b13*b15*b16 + 128*b13*b14*b15*b16 + 64*b13*b14*b16*b17 + 128*b14*b15*b16* b17 + 64*b14*b15*b17*b18 + 128*b15*b16*b17*b18 + 64*b15*b16*b18*b19 + 128* b16*b17*b18*b19 + 64*b16*b17*b19*b20 + 128*b17*b18*b19*b20 + 64*b17*b18* b20*b21 + 128*b18*b19*b20*b21 + 64*b18*b19*b21*b22 + 128*b19*b20*b21*b22 + 64*b19*b20*b22*b23 + 128*b20*b21*b22*b23 + 64*b20*b21*b23*b24 + 128*b21 *b22*b23*b24 + 64*b21*b22*b24*b25 + 128*b22*b23*b24*b25 + 64*b22*b23*b25* b26 + 128*b23*b24*b25*b26 + 64*b23*b24*b26*b27 + 128*b24*b25*b26*b27 + 64* b24*b25*b27*b28 + 128*b25*b26*b27*b28 + 64*b25*b26*b28*b29 + 128*b26*b27* b28*b29 + 64*b26*b27*b29*b30 + 128*b27*b28*b29*b30 + 64*b27*b28*b30*b31 + 128*b28*b29*b30*b31 + 64*b28*b29*b31*b32 + 128*b29*b30*b31*b32 + 64*b29* b30*b32*b33 + 128*b30*b31*b32*b33 + 64*b30*b31*b33*b34 + 128*b31*b32*b33* b34 + 64*b31*b32*b34*b35 + 128*b32*b33*b34*b35 + 64*b32*b33*b35*b36 + 128* b33*b34*b35*b36 + 64*b33*b34*b36*b37 + 128*b34*b35*b36*b37 + 64*b34*b35* b37*b38 + 128*b35*b36*b37*b38 + 64*b35*b36*b38*b39 + 128*b36*b37*b38*b39 + 64*b36*b37*b39*b40 + 128*b37*b38*b39*b40 + 64*b37*b38*b40*b41 + 128*b38 *b39*b40*b41 + 64*b38*b39*b41*b42 + 128*b39*b40*b41*b42 + 64*b39*b40*b42* b43 + 128*b40*b41*b42*b43 + 64*b40*b41*b43*b44 + 128*b41*b42*b43*b44 + 64* b41*b42*b44*b45 + 64*b42*b43*b44*b45 - 32*b1*b2*b3 - 64*b1*b2*b4 - 32*b1* b2*b5 - 32*b1*b3*b4 - 32*b1*b4*b5 - 96*b2*b3*b4 - 96*b2*b3*b5 - 32*b2*b3* b6 - 96*b2*b4*b5 - 32*b2*b5*b6 - 128*b3*b4*b5 - 96*b3*b4*b6 - 32*b3*b4*b7 - 96*b3*b5*b6 - 32*b3*b6*b7 - 128*b4*b5*b6 - 96*b4*b5*b7 - 32*b4*b5*b8 - 96*b4*b6*b7 - 32*b4*b7*b8 - 128*b5*b6*b7 - 96*b5*b6*b8 - 32*b5*b6*b9 - 96* b5*b7*b8 - 32*b5*b8*b9 - 128*b6*b7*b8 - 96*b6*b7*b9 - 32*b6*b7*b10 - 96*b6 *b8*b9 - 32*b6*b9*b10 - 128*b7*b8*b9 - 96*b7*b8*b10 - 32*b7*b8*b11 - 96*b7 *b9*b10 - 32*b7*b10*b11 - 128*b8*b9*b10 - 96*b8*b9*b11 - 32*b8*b9*b12 - 96 *b8*b10*b11 - 32*b8*b11*b12 - 128*b9*b10*b11 - 96*b9*b10*b12 - 32*b9*b10* b13 - 96*b9*b11*b12 - 32*b9*b12*b13 - 128*b10*b11*b12 - 96*b10*b11*b13 - 32*b10*b11*b14 - 96*b10*b12*b13 - 32*b10*b13*b14 - 128*b11*b12*b13 - 96* b11*b12*b14 - 32*b11*b12*b15 - 96*b11*b13*b14 - 32*b11*b14*b15 - 128*b12* b13*b14 - 96*b12*b13*b15 - 32*b12*b13*b16 - 96*b12*b14*b15 - 32*b12*b15* b16 - 128*b13*b14*b15 - 96*b13*b14*b16 - 32*b13*b14*b17 - 96*b13*b15*b16 - 32*b13*b16*b17 - 128*b14*b15*b16 - 96*b14*b15*b17 - 32*b14*b15*b18 - 96 *b14*b16*b17 - 32*b14*b17*b18 - 128*b15*b16*b17 - 96*b15*b16*b18 - 32*b15* b16*b19 - 96*b15*b17*b18 - 32*b15*b18*b19 - 128*b16*b17*b18 - 96*b16*b17* b19 - 32*b16*b17*b20 - 96*b16*b18*b19 - 32*b16*b19*b20 - 128*b17*b18*b19 - 96*b17*b18*b20 - 32*b17*b18*b21 - 96*b17*b19*b20 - 32*b17*b20*b21 - 128 *b18*b19*b20 - 96*b18*b19*b21 - 32*b18*b19*b22 - 96*b18*b20*b21 - 32*b18* b21*b22 - 128*b19*b20*b21 - 96*b19*b20*b22 - 32*b19*b20*b23 - 96*b19*b21* b22 - 32*b19*b22*b23 - 128*b20*b21*b22 - 96*b20*b21*b23 - 32*b20*b21*b24 - 96*b20*b22*b23 - 32*b20*b23*b24 - 128*b21*b22*b23 - 96*b21*b22*b24 - 32 *b21*b22*b25 - 96*b21*b23*b24 - 32*b21*b24*b25 - 128*b22*b23*b24 - 96*b22* b23*b25 - 32*b22*b23*b26 - 96*b22*b24*b25 - 32*b22*b25*b26 - 128*b23*b24* b25 - 96*b23*b24*b26 - 32*b23*b24*b27 - 96*b23*b25*b26 - 32*b23*b26*b27 - 128*b24*b25*b26 - 96*b24*b25*b27 - 32*b24*b25*b28 - 96*b24*b26*b27 - 32* b24*b27*b28 - 128*b25*b26*b27 - 96*b25*b26*b28 - 32*b25*b26*b29 - 96*b25* b27*b28 - 32*b25*b28*b29 - 128*b26*b27*b28 - 96*b26*b27*b29 - 32*b26*b27* b30 - 96*b26*b28*b29 - 32*b26*b29*b30 - 128*b27*b28*b29 - 96*b27*b28*b30 - 32*b27*b28*b31 - 96*b27*b29*b30 - 32*b27*b30*b31 - 128*b28*b29*b30 - 96 *b28*b29*b31 - 32*b28*b29*b32 - 96*b28*b30*b31 - 32*b28*b31*b32 - 128*b29* b30*b31 - 96*b29*b30*b32 - 32*b29*b30*b33 - 96*b29*b31*b32 - 32*b29*b32* b33 - 128*b30*b31*b32 - 96*b30*b31*b33 - 32*b30*b31*b34 - 96*b30*b32*b33 - 32*b30*b33*b34 - 128*b31*b32*b33 - 96*b31*b32*b34 - 32*b31*b32*b35 - 96 *b31*b33*b34 - 32*b31*b34*b35 - 128*b32*b33*b34 - 96*b32*b33*b35 - 32*b32* b33*b36 - 96*b32*b34*b35 - 32*b32*b35*b36 - 128*b33*b34*b35 - 96*b33*b34* b36 - 32*b33*b34*b37 - 96*b33*b35*b36 - 32*b33*b36*b37 - 128*b34*b35*b36 - 96*b34*b35*b37 - 32*b34*b35*b38 - 96*b34*b36*b37 - 32*b34*b37*b38 - 128 *b35*b36*b37 - 96*b35*b36*b38 - 32*b35*b36*b39 - 96*b35*b37*b38 - 32*b35* b38*b39 - 128*b36*b37*b38 - 96*b36*b37*b39 - 32*b36*b37*b40 - 96*b36*b38* b39 - 32*b36*b39*b40 - 128*b37*b38*b39 - 96*b37*b38*b40 - 32*b37*b38*b41 - 96*b37*b39*b40 - 32*b37*b40*b41 - 128*b38*b39*b40 - 96*b38*b39*b41 - 32 *b38*b39*b42 - 96*b38*b40*b41 - 32*b38*b41*b42 - 128*b39*b40*b41 - 96*b39* b40*b42 - 32*b39*b40*b43 - 96*b39*b41*b42 - 32*b39*b42*b43 - 128*b40*b41* b42 - 96*b40*b41*b43 - 32*b40*b41*b44 - 96*b40*b42*b43 - 32*b40*b43*b44 - 128*b41*b42*b43 - 96*b41*b42*b44 - 32*b41*b42*b45 - 96*b41*b43*b44 - 32* b41*b44*b45 - 96*b42*b43*b44 - 32*b42*b43*b45 - 64*b42*b44*b45 - 32*b43* b44*b45 + 32*b1*b2 + 24*b1*b3 + 32*b1*b4 + 24*b1*b5 + 64*b2*b3 + 80*b2*b4 + 64*b2*b5 + 24*b2*b6 + 96*b3*b4 + 104*b3*b5 + 64*b3*b6 + 24*b3*b7 + 128* b4*b5 + 104*b4*b6 + 64*b4*b7 + 24*b4*b8 + 128*b5*b6 + 104*b5*b7 + 64*b5*b8 + 24*b5*b9 + 128*b6*b7 + 104*b6*b8 + 64*b6*b9 + 24*b6*b10 + 128*b7*b8 + 104*b7*b9 + 64*b7*b10 + 24*b7*b11 + 128*b8*b9 + 104*b8*b10 + 64*b8*b11 + 24*b8*b12 + 128*b9*b10 + 104*b9*b11 + 64*b9*b12 + 24*b9*b13 + 128*b10*b11 + 104*b10*b12 + 64*b10*b13 + 24*b10*b14 + 128*b11*b12 + 104*b11*b13 + 64* b11*b14 + 24*b11*b15 + 128*b12*b13 + 104*b12*b14 + 64*b12*b15 + 24*b12*b16 + 128*b13*b14 + 104*b13*b15 + 64*b13*b16 + 24*b13*b17 + 128*b14*b15 + 104 *b14*b16 + 64*b14*b17 + 24*b14*b18 + 128*b15*b16 + 104*b15*b17 + 64*b15* b18 + 24*b15*b19 + 128*b16*b17 + 104*b16*b18 + 64*b16*b19 + 24*b16*b20 + 128*b17*b18 + 104*b17*b19 + 64*b17*b20 + 24*b17*b21 + 128*b18*b19 + 104* b18*b20 + 64*b18*b21 + 24*b18*b22 + 128*b19*b20 + 104*b19*b21 + 64*b19*b22 + 24*b19*b23 + 128*b20*b21 + 104*b20*b22 + 64*b20*b23 + 24*b20*b24 + 128* b21*b22 + 104*b21*b23 + 64*b21*b24 + 24*b21*b25 + 128*b22*b23 + 104*b22* b24 + 64*b22*b25 + 24*b22*b26 + 128*b23*b24 + 104*b23*b25 + 64*b23*b26 + 24*b23*b27 + 128*b24*b25 + 104*b24*b26 + 64*b24*b27 + 24*b24*b28 + 128*b25 *b26 + 104*b25*b27 + 64*b25*b28 + 24*b25*b29 + 128*b26*b27 + 104*b26*b28 + 64*b26*b29 + 24*b26*b30 + 128*b27*b28 + 104*b27*b29 + 64*b27*b30 + 24* b27*b31 + 128*b28*b29 + 104*b28*b30 + 64*b28*b31 + 24*b28*b32 + 128*b29* b30 + 104*b29*b31 + 64*b29*b32 + 24*b29*b33 + 128*b30*b31 + 104*b30*b32 + 64*b30*b33 + 24*b30*b34 + 128*b31*b32 + 104*b31*b33 + 64*b31*b34 + 24*b31* b35 + 128*b32*b33 + 104*b32*b34 + 64*b32*b35 + 24*b32*b36 + 128*b33*b34 + 104*b33*b35 + 64*b33*b36 + 24*b33*b37 + 128*b34*b35 + 104*b34*b36 + 64*b34 *b37 + 24*b34*b38 + 128*b35*b36 + 104*b35*b37 + 64*b35*b38 + 24*b35*b39 + 128*b36*b37 + 104*b36*b38 + 64*b36*b39 + 24*b36*b40 + 128*b37*b38 + 104* b37*b39 + 64*b37*b40 + 24*b37*b41 + 128*b38*b39 + 104*b38*b40 + 64*b38*b41 + 24*b38*b42 + 128*b39*b40 + 104*b39*b41 + 64*b39*b42 + 24*b39*b43 + 128* b40*b41 + 104*b40*b42 + 64*b40*b43 + 24*b40*b44 + 128*b41*b42 + 104*b41* b43 + 64*b41*b44 + 24*b41*b45 + 96*b42*b43 + 80*b42*b44 + 32*b42*b45 + 64* b43*b44 + 24*b43*b45 + 32*b44*b45 - 24*b1 - 52*b2 - 76*b3 - 104*b4 - 128* b5 - 128*b6 - 128*b7 - 128*b8 - 128*b9 - 128*b10 - 128*b11 - 128*b12 - 128 *b13 - 128*b14 - 128*b15 - 128*b16 - 128*b17 - 128*b18 - 128*b19 - 128*b20 - 128*b21 - 128*b22 - 128*b23 - 128*b24 - 128*b25 - 128*b26 - 128*b27 - 128*b28 - 128*b29 - 128*b30 - 128*b31 - 128*b32 - 128*b33 - 128*b34 - 128* b35 - 128*b36 - 128*b37 - 128*b38 - 128*b39 - 128*b40 - 128*b41 - 104*b42 - 76*b43 - 52*b44 - 24*b45 - objvar =L= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91