MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ball_mk3_10
A simple MINLP with a feasible set described by a ball. The basic model over which these variations are made is: min sum_i=1^n x_i s.t. sum_i=1^n (x_i - 0.5)^2 <= (n-1)/4 x integer between -1 and 1. Obvisouly, this problem is infeasible and has no solution. It can be shown that any outer-approximation based method will need 2^n linear inequalities to show infeasibility, see reference. In this instance, the ball is an empty ellipse, but the quadratic form is still diagonal.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -10.00000000 (ALPHAECP) inf (ANTIGONE) inf (BARON) inf (BONMIN) inf (COUENNE) inf (CPLEX) inf (GUROBI) inf (LINDO) inf (SCIP) inf (SHOT) |
Referencesⓘ | Hijazi, Hassan, Bonami, Pierre, and Ouorou, Adam, An Outer-Inner Approximation for Separable Mixed-Integer Nonlinear Programs, INFORMS Journal on Computing, 26:1, 2014, 31-44. |
Sourceⓘ | Pierre Bonami |
Applicationⓘ | Geometry |
Added to libraryⓘ | 11 Sep 2017 |
Problem typeⓘ | IQCP |
#Variablesⓘ | 10 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 10 |
#Nonlinear Variablesⓘ | 10 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 10 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 10 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 1 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 1 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 10 |
#Nonlinear Nonzeros in Jacobianⓘ | 10 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 10 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 10 |
#Blocks in Hessian of Lagrangianⓘ | 10 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 3.5084e-02 |
Maximal coefficientⓘ | 1.0000e+00 |
Infeasibility of initial pointⓘ | 0.0001 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 2 1 0 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 11 1 0 10 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 21 11 10 0 * * Solve m using MINLP minimizing objvar; Variables objvar,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11; Integer Variables i2,i3,i4,i5,i6,i7,i8,i9,i10,i11; Equations e1,e2; e1.. objvar + i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 + i11 =E= 0; e2.. 0.116545517321418*sqr(i10) - 0.116545517321418*i10 + 0.048698282657444* sqr(i9) - 0.048698282657444*i9 + 0.167136633802493*sqr(i8) - 0.167136633802493*i8 + 0.172842180379538*sqr(i7) - 0.172842180379538*i7 + 0.0350835273588374*sqr(i6) - 0.0350835273588374*i6 + 0.133517550184507* sqr(i5) - 0.133517550184507*i5 + 0.107213563760389*sqr(i4) - 0.107213563760389*i4 + 0.0605518448846168*sqr(i3) - 0.0605518448846168*i3 + 0.0745422678604453*sqr(i2) - 0.0745422678604453*i2 + 0.0838686317903121 *sqr(i11) - 0.0838686317903121*i11 =L= -9.9999999999989E-5; * set non-default bounds i2.lo = -1; i2.up = 2; i3.lo = -1; i3.up = 2; i4.lo = -1; i4.up = 2; i5.lo = -1; i5.up = 2; i6.lo = -1; i6.up = 2; i7.lo = -1; i7.up = 2; i8.lo = -1; i8.up = 2; i9.lo = -1; i9.up = 2; i10.lo = -1; i10.up = 2; i11.lo = -1; i11.up = 2; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91