MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ball_mk4_10
A simple MINLP with a feasible set described by a ball. The basic model over which these variations are made is: min sum_i=1^n x_i s.t. sum_i=1^n (x_i - 0.5)^2 <= (n-1)/4 x integer between -1 and 1. Obvisouly, this problem is infeasible and has no solution. It can be shown that any outer-approximation based method will need 2^n linear inequalities to show infeasibility, see reference. In this instance, the ball is an empty ellipse and the quadratic form is not diagonal.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -6.65024410 (ALPHAECP) 6.99327009 (ANTIGONE) 71.00000000 (BARON) 124.16373590 (BONMIN) -14240.00000000 (COUENNE) inf (CPLEX) 6.00000000 (GUROBI) 0.00000000 (LINDO) inf (SCIP) inf (SHOT) |
Referencesⓘ | Hijazi, Hassan, Bonami, Pierre, and Ouorou, Adam, An Outer-Inner Approximation for Separable Mixed-Integer Nonlinear Programs, INFORMS Journal on Computing, 26:1, 2014, 31-44. |
Sourceⓘ | Pierre Bonami |
Applicationⓘ | Geometry |
Added to libraryⓘ | 11 Sep 2017 |
Problem typeⓘ | IQCP |
#Variablesⓘ | 20 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 20 |
#Nonlinear Variablesⓘ | 20 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 20 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 20 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 1 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 1 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 20 |
#Nonlinear Nonzeros in Jacobianⓘ | 20 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 40 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 20 |
#Blocks in Hessian of Lagrangianⓘ | 10 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 1.0000e+02 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 2 1 0 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 21 1 0 20 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 41 21 20 0 * * Solve m using MINLP minimizing objvar; Variables objvar,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,i16,i17,i18 ,i19,i20,i21; Integer Variables i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,i16,i17,i18 ,i19,i20,i21; Equations e1,e2; e1.. objvar - 19*i2 - 18*i3 - 17*i4 - 16*i5 - 15*i6 - 14*i7 - 13*i8 - 12*i9 - 11*i10 - 10*i11 - 9*i12 - 8*i13 - 7*i14 - 6*i15 - 5*i16 - 4*i17 - 3*i18 - 2*i19 - i20 - 20*i21 =E= 0; e2.. 100*sqr(i20) - 98*i20 + 100*sqr(i19) - 98*i19 + 100*sqr(i18) - 98*i18 + 100*sqr(i17) - 98*i17 + 100*sqr(i16) - 98*i16 + 100*sqr(i15) - 98*i15 + 100*sqr(i14) - 98*i14 + 100*sqr(i13) - 98*i13 + 100*sqr(i12) - 98*i12 + 100*sqr(i11) - 98*i11 + 100*sqr(i10) - 98*i10 + 100*sqr(i9) - 98*i9 + 100* sqr(i8) - 98*i8 + 100*sqr(i7) - 98*i7 + 100*sqr(i6) - 98*i6 + 100*sqr(i5) - 98*i5 + 100*sqr(i4) - 98*i4 + 100*sqr(i3) - 98*i3 + 100*sqr(i2) - 98*i2 + 100*sqr(i21) - 98*i21 - 2*i20*i19 - 2*i20*i19 - 2*i18*i17 - 2*i18*i17 - 2*i16*i15 - 2*i16*i15 - 2*i14*i13 - 2*i14*i13 - 2*i12*i11 - 2*i12*i11 - 2*i10*i9 - 2*i10*i9 - 2*i8*i7 - 2*i8*i7 - 2*i6*i5 - 2*i6*i5 - 2*i4*i3 - 2*i4*i3 - 2*i2*i21 - 2*i2*i21 =L= -1; * set non-default bounds i2.lo = -100; i3.lo = -100; i4.lo = -100; i5.lo = -100; i6.lo = -100; i7.lo = -100; i8.lo = -100; i9.lo = -100; i10.lo = -100; i11.lo = -100; i12.lo = -100; i13.lo = -100; i14.lo = -100; i15.lo = -100; i16.lo = -100; i17.lo = -100; i18.lo = -100; i19.lo = -100; i20.lo = -100; i21.lo = -100; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if gamsversion 242 option intvarup = 0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91