MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance batch0812
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 2687026.78400000 (ALPHAECP) 2687014.99200000 (ANTIGONE) 2687026.78400000 (BARON) 2687026.78400000 (BONMIN) 2687020.11400000 (COUENNE) 2687026.78400000 (LINDO) 2687026.78400000 (SCIP) 2686968.28500000 (SHOT) |
Referencesⓘ | You, Fengqi and Grossmann, I E, Mixed-Integer Nonlinear Programming Models for the Optimal Design of Multi-product Batch Plant, 2009. |
Sourceⓘ | convex2.gms from minlp.org model 48 |
Applicationⓘ | Multi-Product Batch Plant Design |
Added to libraryⓘ | 24 Sep 2013 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 100 |
#Binary Variablesⓘ | 60 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 40 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 24 |
#Nonlinear Nonzeros in Objectiveⓘ | 24 |
#Constraintsⓘ | 217 |
#Linear Constraintsⓘ | 216 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 1 |
Operands in Gen. Nonlin. Functionsⓘ | exp |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 520 |
#Nonlinear Nonzeros in Jacobianⓘ | 16 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 80 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 40 |
#Blocks in Hessian of Lagrangianⓘ | 20 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 6.0000e-01 |
Maximal coefficientⓘ | 4.8500e+05 |
Infeasibility of initial pointⓘ | 4.2e+04 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 218 25 192 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 101 41 60 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 545 505 40 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53 ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70 ,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87 ,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12; Binary Variables b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53,b54,b55 ,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70,b71,b72 ,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87,b88,b89 ,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168 ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181 ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194 ,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207 ,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218; e1.. -(250*exp(x1 + 0.6*x13) + 550*exp(x2 + 0.6*x14) + 250*exp(x3 + 0.6*x15) + 1000*exp(x4 + 0.6*x16) + 300*exp(x5 + 0.6*x17) + 800*exp(x6 + 0.6*x18) + 200*exp(x7 + 0.6*x19) + 1200*exp(x8 + 0.6*x20) + 250*exp(x9 + 0.6*x21) + 250*exp(x10 + 0.6*x22) + 450*exp(x11 + 0.6*x23) + 700*exp(x12 + 0.6*x24)) + objvar =E= 0; e2.. x13 - x25 =G= 2.06686275947298; e3.. x14 - x25 =G= 0.693147180559945; e4.. x15 - x25 =G= 1.64865862558738; e5.. x16 - x25 =G= 1.58923520511658; e6.. x17 - x25 =G= 1.80828877117927; e7.. x18 - x25 =G= 1.43508452528932; e8.. x19 - x25 =G= 1.02961941718116; e9.. x20 - x25 =G= 1.19392246847243; e10.. x21 - x25 =G= 1.41098697371026; e11.. x22 - x25 =G= 1.33500106673234; e12.. x23 - x25 =G= 1.02961941718116; e13.. x24 - x25 =G= 1.3609765531356; e14.. x13 - x26 =G= -0.356674943938732; e15.. x14 - x26 =G= -0.22314355131421; e16.. x15 - x26 =G= -0.105360515657826; e17.. x16 - x26 =G= 1.22377543162212; e18.. x17 - x26 =G= 0.741937344729377; e19.. x18 - x26 =G= 0.916290731874155; e20.. x19 - x26 =G= 1.19392246847243; e21.. x20 - x26 =G= 1.09861228866811; e22.. x21 - x26 =G= 0.993251773010283; e23.. x22 - x26 =G= 0.8754687373539; e24.. x23 - x26 =G= 0.78845736036427; e25.. x24 - x26 =G= 1.1314021114911; e26.. x13 - x27 =G= -0.356674943938732; e27.. x14 - x27 =G= 0.955511445027436; e28.. x15 - x27 =G= 0.470003629245736; e29.. x16 - x27 =G= 1.28093384546206; e30.. x17 - x27 =G= 1.16315080980568; e31.. x18 - x27 =G= 1.06471073699243; e32.. x19 - x27 =G= 0.955511445027436; e33.. x20 - x27 =G= 0.78845736036427; e34.. x21 - x27 =G= 1.52605630349505; e35.. x22 - x27 =G= 1.45861502269952; e36.. x23 - x27 =G= 1.43508452528932; e37.. x24 - x27 =G= 1.52605630349505; e38.. x13 - x28 =G= 1.54756250871601; e39.. x14 - x28 =G= 0.832909122935104; e40.. x15 - x28 =G= 0.470003629245736; e41.. x16 - x28 =G= 0.993251773010283; e42.. x17 - x28 =G= 0.182321556793955; e43.. x18 - x28 =G= 0.916290731874155; e44.. x19 - x28 =G= 0.405465108108164; e45.. x20 - x28 =G= 0.405465108108164; e46.. x21 - x28 =G= 0.262364264467491; e47.. x22 - x28 =G= 0.53062825106217; e48.. x23 - x28 =G= 0.405465108108164; e49.. x24 - x28 =G= 0.587786664902119; e50.. x13 - x29 =G= 0.182321556793955; e51.. x14 - x29 =G= 1.28093384546206; e52.. x15 - x29 =G= 0.8754687373539; e53.. x16 - x29 =G= 1.50407739677627; e54.. x17 - x29 =G= 0.470003629245736; e55.. x18 - x29 =G= 0.741937344729377; e56.. x19 - x29 =G= 0.8754687373539; e57.. x20 - x29 =G= 0.993251773010283; e58.. x21 - x29 =G= 1.02961941718116; e59.. x22 - x29 =G= 1.25276296849537; e60.. x23 - x29 =G= 1.25276296849537; e61.. x24 - x29 =G= 1.45861502269952; e62.. x13 - x30 =G= -0.356674943938732; e63.. x14 - x30 =G= 0.8754687373539; e64.. x15 - x30 =G= 1.1314021114911; e65.. x16 - x30 =G= 0.78845736036427; e66.. x17 - x30 =G= 1.30833281965018; e67.. x18 - x30 =G= 1.56861591791385; e68.. x19 - x30 =G= 1.50407739677627; e69.. x20 - x30 =G= 1.64865862558738; e70.. x21 - x30 =G= 1.85629799036563; e71.. x22 - x30 =G= 1.7404661748405; e72.. x23 - x30 =G= 1.85629799036563; e73.. x24 - x30 =G= 1.91692261218206; e74.. x13 - x31 =G= 0.832909122935104; e75.. x14 - x31 =G= 1.54756250871601; e76.. x15 - x31 =G= 1.64865862558738; e77.. x16 - x31 =G= 1.25276296849537; e78.. x17 - x31 =G= 1.06471073699243; e79.. x18 - x31 =G= 1.28093384546206; e80.. x19 - x31 =G= 1.19392246847243; e81.. x20 - x31 =G= 1.16315080980568; e82.. x21 - x31 =G= 1.41098697371026; e83.. x22 - x31 =G= 1.30833281965018; e84.. x23 - x31 =G= 1.22377543162212; e85.. x24 - x31 =G= 1.30833281965018; e86.. x13 - x32 =G= -0.916290731874155; e87.. x14 - x32 =G= -0.105360515657826; e88.. x15 - x32 =G= 0.0953101798043249; e89.. x16 - x32 =G= 0.336472236621213; e90.. x17 - x32 =G= 0.470003629245736; e91.. x18 - x32 =G= 0.78845736036427; e92.. x19 - x32 =G= 0.693147180559945; e93.. x20 - x32 =G= 0.587786664902119; e94.. x21 - x32 =G= 0.587786664902119; e95.. x22 - x32 =G= 0.470003629245736; e96.. x23 - x32 =G= 0.587786664902119; e97.. x24 - x32 =G= 0.693147180559945; e98.. x1 + x33 =G= 1.85629799036563; e99.. x2 + x33 =G= 1.54756250871601; e100.. x3 + x33 =G= 2.11625551480255; e101.. x4 + x33 =G= 1.3609765531356; e102.. x5 + x33 =G= 0.741937344729377; e103.. x6 + x33 =G= 0.182321556793955; e104.. x7 + x33 =G= -0.22314355131421; e105.. x8 + x33 =G= 0.78845736036427; e106.. x9 + x33 =G= 0.182321556793955; e107.. x10 + x33 =G= 0.916290731874155; e108.. x11 + x33 =G= 1.22377543162212; e109.. x12 + x33 =G= 1.33500106673234; e110.. x1 + x34 =G= 1.91692261218206; e111.. x2 + x34 =G= 1.85629799036563; e112.. x3 + x34 =G= 1.87180217690159; e113.. x4 + x34 =G= 1.48160454092422; e114.. x5 + x34 =G= 0.832909122935104; e115.. x6 + x34 =G= 1.16315080980568; e116.. x7 + x34 =G= -0.916290731874155; e117.. x8 + x34 =G= -1.6094379124341; e118.. x9 + x34 =G= -0.693147180559945; e119.. x10 + x34 =G= 1.19392246847243; e120.. x11 + x34 =G= -0.510825623765991; e121.. x12 + x34 =G= 0.182321556793955; e122.. x1 + x35 =G= 0; e123.. x2 + x35 =G= 1.84054963339749; e124.. x3 + x35 =G= 1.68639895357023; e125.. x4 + x35 =G= 2.47653840011748; e126.. x5 + x35 =G= 1.7404661748405; e127.. x6 + x35 =G= 1.82454929205105; e128.. x7 + x35 =G= 0.0953101798043249; e129.. x8 + x35 =G= -0.510825623765991; e130.. x9 + x35 =G= 0.182321556793955; e131.. x10 + x35 =G= 1.45861502269952; e132.. x11 + x35 =G= 1.02961941718116; e133.. x12 + x35 =G= 1.64865862558738; e134.. x1 + x36 =G= 1.16315080980568; e135.. x2 + x36 =G= 1.09861228866811; e136.. x3 + x36 =G= 1.25276296849537; e137.. x4 + x36 =G= 1.19392246847243; e138.. x5 + x36 =G= 1.02961941718116; e139.. x6 + x36 =G= 1.22377543162212; e140.. x7 + x36 =G= 0.53062825106217; e141.. x8 + x36 =G= -0.105360515657826; e142.. x9 + x36 =G= 0.78845736036427; e143.. x10 + x36 =G= 0.765467842139571; e144.. x11 + x36 =G= 0.587786664902119; e145.. x12 + x36 =G= 0.916290731874155; e146.. x1 + x37 =G= 0.741937344729377; e147.. x2 + x37 =G= 0.916290731874155; e148.. x3 + x37 =G= 1.43508452528932; e149.. x4 + x37 =G= 1.28093384546206; e150.. x5 + x37 =G= 1.7404661748405; e151.. x6 + x37 =G= 0.78845736036427; e152.. x7 + x37 =G= 0.182321556793955; e153.. x8 + x37 =G= -0.510825623765991; e154.. x9 + x37 =G= 0.139761942375159; e155.. x10 + x37 =G= 1.1314021114911; e156.. x11 + x37 =G= 1.43508452528932; e157.. x12 + x37 =G= 0.470003629245736; e158.. x1 + x38 =G= 0.0953101798043249; e159.. x2 + x38 =G= -0.22314355131421; e160.. x3 + x38 =G= -0.916290731874155; e161.. x4 + x38 =G= 0.0953101798043249; e162.. x5 + x38 =G= 0.587786664902119; e163.. x6 + x38 =G= 0.916290731874155; e164.. x7 + x38 =G= -0.693147180559945; e165.. x8 + x38 =G= 0.262364264467491; e166.. x9 + x38 =G= 0.336472236621213; e167.. x10 + x38 =G= 1.44691898293633; e168.. x11 + x38 =G= 0.993251773010283; e169.. x12 + x38 =G= -0.105360515657826; e170.. x1 + x39 =G= 1.43508452528932; e171.. x2 + x39 =G= 1.38629436111989; e172.. x3 + x39 =G= 0.78845736036427; e173.. x4 + x39 =G= -0.693147180559945; e174.. x5 + x39 =G= 1.22377543162212; e175.. x6 + x39 =G= 0.78845736036427; e176.. x7 + x39 =G= 0.336472236621213; e177.. x8 + x39 =G= -0.105360515657826; e178.. x9 + x39 =G= 0.741937344729377; e179.. x10 + x39 =G= 1.48160454092422; e180.. x11 + x39 =G= 0.78845736036427; e181.. x12 + x39 =G= 1.16315080980568; e182.. x1 + x40 =G= 0.993251773010283; e183.. x2 + x40 =G= 1.45861502269952; e184.. x3 + x40 =G= 0.641853886172395; e185.. x4 + x40 =G= 0.693147180559945; e186.. x5 + x40 =G= 0.53062825106217; e187.. x6 + x40 =G= -0.356674943938732; e188.. x7 + x40 =G= -1.20397280432594; e189.. x8 + x40 =G= -1.6094379124341; e190.. x9 + x40 =G= 0.470003629245736; e191.. x10 + x40 =G= 1.25276296849537; e192.. x11 + x40 =G= 1.22377543162212; e193.. x12 + x40 =G= 0.741937344729377; e194.. 485000*exp(x33 - x25) + 297000*exp(x34 - x26) + 320000*exp(x35 - x27) + 283000*exp(x36 - x28) + 363000*exp(x37 - x29) + 265000*exp(x38 - x30) + 288000*exp(x39 - x31) + 145000*exp(x40 - x32) =L= 6000; e195.. x1 - 0.693147180559945*b53 - 1.09861228866811*b65 - 1.38629436111989*b77 - 1.6094379124341*b89 =E= 0; e196.. x2 - 0.693147180559945*b54 - 1.09861228866811*b66 - 1.38629436111989*b78 - 1.6094379124341*b90 =E= 0; e197.. x3 - 0.693147180559945*b55 - 1.09861228866811*b67 - 1.38629436111989*b79 - 1.6094379124341*b91 =E= 0; e198.. x4 - 0.693147180559945*b56 - 1.09861228866811*b68 - 1.38629436111989*b80 - 1.6094379124341*b92 =E= 0; e199.. x5 - 0.693147180559945*b57 - 1.09861228866811*b69 - 1.38629436111989*b81 - 1.6094379124341*b93 =E= 0; e200.. x6 - 0.693147180559945*b58 - 1.09861228866811*b70 - 1.38629436111989*b82 - 1.6094379124341*b94 =E= 0; e201.. x7 - 0.693147180559945*b59 - 1.09861228866811*b71 - 1.38629436111989*b83 - 1.6094379124341*b95 =E= 0; e202.. x8 - 0.693147180559945*b60 - 1.09861228866811*b72 - 1.38629436111989*b84 - 1.6094379124341*b96 =E= 0; e203.. x9 - 0.693147180559945*b61 - 1.09861228866811*b73 - 1.38629436111989*b85 - 1.6094379124341*b97 =E= 0; e204.. x10 - 0.693147180559945*b62 - 1.09861228866811*b74 - 1.38629436111989*b86 - 1.6094379124341*b98 =E= 0; e205.. x11 - 0.693147180559945*b63 - 1.09861228866811*b75 - 1.38629436111989*b87 - 1.6094379124341*b99 =E= 0; e206.. x12 - 0.693147180559945*b64 - 1.09861228866811*b76 - 1.38629436111989*b88 - 1.6094379124341*b100 =E= 0; e207.. b41 + b53 + b65 + b77 + b89 =E= 1; e208.. b42 + b54 + b66 + b78 + b90 =E= 1; e209.. b43 + b55 + b67 + b79 + b91 =E= 1; e210.. b44 + b56 + b68 + b80 + b92 =E= 1; e211.. b45 + b57 + b69 + b81 + b93 =E= 1; e212.. b46 + b58 + b70 + b82 + b94 =E= 1; e213.. b47 + b59 + b71 + b83 + b95 =E= 1; e214.. b48 + b60 + b72 + b84 + b96 =E= 1; e215.. b49 + b61 + b73 + b85 + b97 =E= 1; e216.. b50 + b62 + b74 + b86 + b98 =E= 1; e217.. b51 + b63 + b75 + b87 + b99 =E= 1; e218.. b52 + b64 + b76 + b88 + b100 =E= 1; * set non-default bounds x1.up = 1.6094379124341; x2.up = 1.6094379124341; x3.up = 1.6094379124341; x4.up = 1.6094379124341; x5.up = 1.6094379124341; x6.up = 1.6094379124341; x7.up = 1.6094379124341; x8.up = 1.6094379124341; x9.up = 1.6094379124341; x10.up = 1.6094379124341; x11.up = 1.6094379124341; x12.up = 1.6094379124341; x13.lo = 5.7037824746562; x13.up = 8.00636756765025; x14.lo = 5.7037824746562; x14.up = 8.00636756765025; x15.lo = 5.7037824746562; x15.up = 8.00636756765025; x16.lo = 5.7037824746562; x16.up = 8.00636756765025; x17.lo = 5.7037824746562; x17.up = 8.00636756765025; x18.lo = 5.7037824746562; x18.up = 8.00636756765025; x19.lo = 5.7037824746562; x19.up = 8.00636756765025; x20.lo = 5.7037824746562; x20.up = 8.00636756765025; x21.lo = 5.7037824746562; x21.up = 8.00636756765025; x22.lo = 5.7037824746562; x22.up = 8.00636756765025; x23.lo = 5.7037824746562; x23.up = 8.00636756765025; x24.lo = 5.7037824746562; x24.up = 8.00636756765025; x25.lo = 4.89920702407788; x25.up = 5.93950480817727; x26.lo = 4.2094573693226; x26.up = 6.78259213602813; x27.lo = 4.8436620142491; x27.up = 6.4803112641552; x28.lo = 3.49701248447645; x28.up = 6.45880505893423; x29.lo = 4.2336716274432; x29.up = 6.50229017087397; x30.lo = 3.62545142726039; x30.up = 6.08944495546819; x31.lo = 3.74336763939801; x31.up = 6.35770894206286; x32.lo = 3.03415138345794; x32.up = 7.21791020728598; x33.lo = 0.506817602368452; x33.up = 2.11625551480255; x34.lo = 0.307484699747961; x34.up = 1.91692261218206; x35.lo = 0.867100487683383; x35.up = 2.47653840011748; x36.lo = -0.356674943938732; x36.up = 1.25276296849537; x37.lo = 0.131028262406404; x37.up = 1.7404661748405; x38.lo = -0.162518929497775; x38.up = 1.44691898293633; x39.lo = -0.127833371509885; x39.up = 1.48160454092422; x40.lo = -0.150822889734584; x40.up = 1.45861502269952; * set non-default levels x36.l = -0.356674943938732; x38.l = -0.162518929497775; x39.l = -0.127833371509885; x40.l = -0.150822889734584; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91