MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance batchdes
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 167427.65630000 (ALPHAECP) 167427.65710000 (ANTIGONE) 167427.65710000 (BARON) 167427.65700000 (BONMIN) 167427.65710000 (COUENNE) 167427.65710000 (LINDO) 167427.65710000 (SCIP) 167427.63680000 (SHOT) |
Referencesⓘ | Kocis, Gary R and Grossmann, I E, Global Optimization of Nonconvex MINLP Problems in Process Synthesis, Industrial and Engineering Chemistry Research, 27:8, 1988, 1407-1421. |
Sourceⓘ | GAMS Model Library model batchdes |
Applicationⓘ | Batch processing |
Added to libraryⓘ | 01 May 2001 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 19 |
#Binary Variablesⓘ | 9 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 10 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 6 |
#Nonlinear Nonzeros in Objectiveⓘ | 6 |
#Constraintsⓘ | 19 |
#Linear Constraintsⓘ | 18 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 1 |
Operands in Gen. Nonlin. Functionsⓘ | exp |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 46 |
#Nonlinear Nonzeros in Jacobianⓘ | 4 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 20 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 10 |
#Blocks in Hessian of Lagrangianⓘ | 5 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 6.0000e-01 |
Maximal coefficientⓘ | 2.0000e+05 |
Infeasibility of initial pointⓘ | 517.1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 20 7 12 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 20 11 9 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 53 43 10 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,objvar; Positive Variables x17,x18,x19; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20; e1.. x10 - x13 =G= 0.693147180559945; e2.. x11 - x13 =G= 1.09861228866811; e3.. x12 - x13 =G= 1.38629436111989; e4.. x10 - x14 =G= 1.38629436111989; e5.. x11 - x14 =G= 1.79175946922805; e6.. x12 - x14 =G= 1.09861228866811; e7.. x15 + x17 =G= 2.07944154167984; e8.. x15 + x18 =G= 2.99573227355399; e9.. x15 + x19 =G= 1.38629436111989; e10.. x16 + x17 =G= 2.30258509299405; e11.. x16 + x18 =G= 2.484906649788; e12.. x16 + x19 =G= 1.09861228866811; e13.. 200000*exp(x15 - x13) + 150000*exp(x16 - x14) =L= 6000; e14.. - 0.693147180559945*b4 - 1.09861228866811*b7 + x17 =E= 0; e15.. - 0.693147180559945*b5 - 1.09861228866811*b8 + x18 =E= 0; e16.. - 0.693147180559945*b6 - 1.09861228866811*b9 + x19 =E= 0; e17.. b1 + b4 + b7 =E= 1; e18.. b2 + b5 + b8 =E= 1; e19.. b3 + b6 + b9 =E= 1; e20.. -(250*exp(0.6*x10 + x17) + 500*exp(0.6*x11 + x18) + 340*exp(0.6*x12 + x19 )) + objvar =E= 0; * set non-default bounds x10.lo = 5.52146091786225; x10.up = 7.82404601085629; x11.lo = 5.52146091786225; x11.up = 7.82404601085629; x12.lo = 5.52146091786225; x12.up = 7.82404601085629; x13.lo = 5.40367788220586; x13.up = 6.4377516497364; x14.lo = 4.60517018598809; x14.up = 6.03228654162824; x15.lo = 1.89711998488588; x15.up = 2.99573227355399; x16.lo = 1.38629436111989; x16.up = 2.484906649788; x17.up = 1.09861228866811; x18.up = 1.09861228866811; x19.up = 1.09861228866811; * set non-default levels x10.l = 6.70502272492805; x11.l = 7.11048783303622; x12.l = 7.30700912709102; x13.l = 5.92071476597113; x14.l = 5.31872836380816; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91