MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance bayes2_30
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 0.00000000 (ANTIGONE) 0.00010741 (BARON) 0.00000000 (COUENNE) 0.00000000 (GUROBI) 0.00000000 (LINDO) 0.00000000 (SCIP) 0.00000000 (SHOT) |
Referencesⓘ | Greenberg, Betsy, Lasdon, L S, and Plummer, John, Using Global Optimization to Estimate Population Class Sizes, Journal of Global Optimization, 36:3, 2006, 319-338. |
Sourceⓘ | Leon Lasdon |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | QCP |
#Variablesⓘ | 86 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 65 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 20 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 77 |
#Linear Constraintsⓘ | 22 |
#Quadratic Constraintsⓘ | 55 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 598 |
#Nonlinear Nonzeros in Jacobianⓘ | 440 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 770 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 65 |
Maximal blocksize in Hessian of Lagrangianⓘ | 65 |
Average blocksize in Hessian of Lagrangianⓘ | 65.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.8431e-06 |
Maximal coefficientⓘ | 4.2400e+02 |
Infeasibility of initial pointⓘ | 9945 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 78 68 10 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 87 87 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 619 179 440 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86 ,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68 ,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85 ,x86; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78; e1.. 0.299999999999999*x2 - x12*(0.299999999999999*x2 + 0.420042004200419*x3 + 0.441069311972204*x4 + 0.411670573863023*x5 + 0.360201456247447*x6 + 0.30254760034903*x7 + 0.247052285556172*x8 + 0.197610748687493*x9 + 0.15558731597959*x10 + 0.120982941684104*x11) =E= 0; e2.. 0.420042004200419*x3 - x13*(0.299999999999999*x2 + 0.420042004200419*x3 + 0.441069311972204*x4 + 0.411670573863023*x5 + 0.360201456247447*x6 + 0.30254760034903*x7 + 0.247052285556172*x8 + 0.197610748687493*x9 + 0.15558731597959*x10 + 0.120982941684104*x11) =E= 0; e3.. 0.0899789978997899*x3 - x14*(0.0899789978997899*x3 + 0.188993694328424*x4 + 0.264632763149874*x5 + 0.308773522162667*x6 + 0.324235367869763*x7 + 0.317759744553093*x8 + 0.296571521818452*x9 + 0.266899105175344*x10 + 0.233513342319487*x11) =E= 0; e4.. 0.441069311972204*x4 - x15*(0.299999999999999*x2 + 0.420042004200419*x3 + 0.441069311972204*x4 + 0.411670573863023*x5 + 0.360201456247447*x6 + 0.30254760034903*x7 + 0.247052285556172*x8 + 0.197610748687493*x9 + 0.15558731597959*x10 + 0.120982941684104*x11) =E= 0; e5.. 0.188993694328424*x4 - x16*(0.0899789978997899*x3 + 0.188993694328424*x4 + 0.264632763149874*x5 + 0.308773522162667*x6 + 0.324235367869763*x7 + 0.317759744553093*x8 + 0.296571521818452*x9 + 0.266899105175344*x10 + 0.233513342319487*x11) =E= 0; e6.. 0.026981099790315*x4 - x17*(0.026981099790315*x4 + 0.0755697503379837*x5 + 0.132281083087121*x6 + 0.185233220498984*x7 + 0.22694961744096*x8 + 0.25421627517133*x9 + 0.266949986712887*x10 + 0.266961437732522*x11) =E= 0 ; e7.. 0.411670573863023*x5 - x18*(0.299999999999999*x2 + 0.420042004200419*x3 + 0.441069311972204*x4 + 0.411670573863023*x5 + 0.360201456247447*x6 + 0.30254760034903*x7 + 0.247052285556172*x8 + 0.197610748687493*x9 + 0.15558731597959*x10 + 0.120982941684104*x11) =E= 0; e8.. 0.264632763149874*x5 - x19*(0.0899789978997899*x3 + 0.188993694328424*x4 + 0.264632763149874*x5 + 0.308773522162667*x6 + 0.324235367869763*x7 + 0.317759744553093*x8 + 0.296571521818452*x9 + 0.266899105175344*x10 + 0.233513342319487*x11) =E= 0; e9.. 0.0755697503379837*x5 - x20*(0.026981099790315*x4 + 0.0755697503379837*x5 + 0.132281083087121*x6 + 0.185233220498984*x7 + 0.22694961744096*x8 + 0.25421627517133*x9 + 0.266949986712887*x10 + 0.266961437732522*x11) =E= 0 ; e10.. 0.00808866220581916*x5 - x21*(0.00808866220581916*x5 + 0.0283216463789187 *x6 + 0.0594967092564436*x7 + 0.0972085184322643*x8 + 0.136128890917752* x9 + 0.171561639066158*x10 + 0.200192450750305*x11) =E= 0; e11.. 0.360201456247447*x6 - x22*(0.299999999999999*x2 + 0.420042004200419*x3 + 0.441069311972204*x4 + 0.411670573863023*x5 + 0.360201456247447*x6 + 0.30254760034903*x7 + 0.247052285556172*x8 + 0.197610748687493*x9 + 0.15558731597959*x10 + 0.120982941684104*x11) =E= 0; e12.. 0.308773522162667*x6 - x23*(0.0899789978997899*x3 + 0.188993694328424*x4 + 0.264632763149874*x5 + 0.308773522162667*x6 + 0.324235367869763*x7 + 0.317759744553093*x8 + 0.296571521818452*x9 + 0.266899105175344*x10 + 0.233513342319487*x11) =E= 0; e13.. 0.132281083087121*x6 - x24*(0.026981099790315*x4 + 0.0755697503379837*x5 + 0.132281083087121*x6 + 0.185233220498984*x7 + 0.22694961744096*x8 + 0.25421627517133*x9 + 0.266949986712887*x10 + 0.266961437732522*x11) =E= 0; e14.. 0.0283216463789187*x6 - x25*(0.00808866220581916*x5 + 0.0283216463789187* x6 + 0.0594967092564436*x7 + 0.0972085184322643*x8 + 0.136128890917752*x9 + 0.171561639066158*x10 + 0.200192450750305*x11) =E= 0; e15.. 0.00242433293003544*x6 - x26*(0.00242433293003544*x6 + 0.0101872919521249 *x7 + 0.0249702818996627*x8 + 0.0466305167574201*x9 + 0.0734703645857939* x10 + 0.102892337231952*x11) =E= 0; e16.. 0.30254760034903*x7 - x27*(0.299999999999999*x2 + 0.420042004200419*x3 + 0.441069311972204*x4 + 0.411670573863023*x5 + 0.360201456247447*x6 + 0.30254760034903*x7 + 0.247052285556172*x8 + 0.197610748687493*x9 + 0.15558731597959*x10 + 0.120982941684104*x11) =E= 0; e17.. 0.324235367869763*x7 - x28*(0.0899789978997899*x3 + 0.188993694328424*x4 + 0.264632763149874*x5 + 0.308773522162667*x6 + 0.324235367869763*x7 + 0.317759744553093*x8 + 0.296571521818452*x9 + 0.266899105175344*x10 + 0.233513342319487*x11) =E= 0; e18.. 0.185233220498984*x7 - x29*(0.026981099790315*x4 + 0.0755697503379837*x5 + 0.132281083087121*x6 + 0.185233220498984*x7 + 0.22694961744096*x8 + 0.25421627517133*x9 + 0.266949986712887*x10 + 0.266961437732522*x11) =E= 0; e19.. 0.0594967092564436*x7 - x30*(0.00808866220581916*x5 + 0.0283216463789187* x6 + 0.0594967092564436*x7 + 0.0972085184322643*x8 + 0.136128890917752*x9 + 0.171561639066158*x10 + 0.200192450750305*x11) =E= 0; e20.. 0.0101872919521249*x7 - x31*(0.00242433293003544*x6 + 0.0101872919521249* x7 + 0.0249702818996627*x8 + 0.0466305167574201*x9 + 0.0734703645857939* x10 + 0.102892337231952*x11) =E= 0; e21.. 0.000726450938014618*x7 - x32*(0.000726450938014618*x7 + 0.00356174664425821*x8 + 0.0099784508208397*x9 + 0.0209655320789341*x10 + 0.0367069932830306*x11) =E= 0; e22.. 0.247052285556172*x8 - x33*(0.299999999999999*x2 + 0.420042004200419*x3 + 0.441069311972204*x4 + 0.411670573863023*x5 + 0.360201456247447*x6 + 0.30254760034903*x7 + 0.247052285556172*x8 + 0.197610748687493*x9 + 0.15558731597959*x10 + 0.120982941684104*x11) =E= 0; e23.. 0.317759744553093*x8 - x34*(0.0899789978997899*x3 + 0.188993694328424*x4 + 0.264632763149874*x5 + 0.308773522162667*x6 + 0.324235367869763*x7 + 0.317759744553093*x8 + 0.296571521818452*x9 + 0.266899105175344*x10 + 0.233513342319487*x11) =E= 0; e24.. 0.22694961744096*x8 - x35*(0.026981099790315*x4 + 0.0755697503379837*x5 + 0.132281083087121*x6 + 0.185233220498984*x7 + 0.22694961744096*x8 + 0.25421627517133*x9 + 0.266949986712887*x10 + 0.266961437732522*x11) =E= 0; e25.. 0.0972085184322643*x8 - x36*(0.00808866220581916*x5 + 0.0283216463789187* x6 + 0.0594967092564436*x7 + 0.0972085184322643*x8 + 0.136128890917752*x9 + 0.171561639066158*x10 + 0.200192450750305*x11) =E= 0; e26.. 0.0249702818996627*x8 - x37*(0.00242433293003544*x6 + 0.0101872919521249* x7 + 0.0249702818996627*x8 + 0.0466305167574201*x9 + 0.0734703645857939* x10 + 0.102892337231952*x11) =E= 0; e27.. 0.00356174664425821*x8 - x38*(0.000726450938014618*x7 + 0.00356174664425821*x8 + 0.0099784508208397*x9 + 0.0209655320789341*x10 + 0.0367069932830306*x11) =E= 0; e28.. 0.000217629988834878*x8 - x39*(0.000217629988834878*x8 + 0.00121958164462655*x9 + 0.00384420873582218*x10 + 0.00897533537960286* x11) =E= 0; e29.. 0.197610748687493*x9 - x40*(0.299999999999999*x2 + 0.420042004200419*x3 + 0.441069311972204*x4 + 0.411670573863023*x5 + 0.360201456247447*x6 + 0.30254760034903*x7 + 0.247052285556172*x8 + 0.197610748687493*x9 + 0.15558731597959*x10 + 0.120982941684104*x11) =E= 0; e30.. 0.296571521818452*x9 - x41*(0.0899789978997899*x3 + 0.188993694328424*x4 + 0.264632763149874*x5 + 0.308773522162667*x6 + 0.324235367869763*x7 + 0.317759744553093*x8 + 0.296571521818452*x9 + 0.266899105175344*x10 + 0.233513342319487*x11) =E= 0; e31.. 0.25421627517133*x9 - x42*(0.026981099790315*x4 + 0.0755697503379837*x5 + 0.132281083087121*x6 + 0.185233220498984*x7 + 0.22694961744096*x8 + 0.25421627517133*x9 + 0.266949986712887*x10 + 0.266961437732522*x11) =E= 0; e32.. 0.136128890917752*x9 - x43*(0.00808866220581916*x5 + 0.0283216463789187* x6 + 0.0594967092564436*x7 + 0.0972085184322643*x8 + 0.136128890917752*x9 + 0.171561639066158*x10 + 0.200192450750305*x11) =E= 0; e33.. 0.0466305167574201*x9 - x44*(0.00242433293003544*x6 + 0.0101872919521249* x7 + 0.0249702818996627*x8 + 0.0466305167574201*x9 + 0.0734703645857939* x10 + 0.102892337231952*x11) =E= 0; e34.. 0.0099784508208397*x9 - x45*(0.000726450938014618*x7 + 0.00356174664425821*x8 + 0.0099784508208397*x9 + 0.0209655320789341*x10 + 0.0367069932830306*x11) =E= 0; e35.. 0.00121958164462655*x9 - x46*(0.000217629988834878*x8 + 0.00121958164462655*x9 + 0.00384420873582218*x10 + 0.00897533537960286* x11) =E= 0; e36.. 6.51822832565586e-5*x9 - x47*(6.51822832565586e-5*x9 + 0.000410977166249314*x10 + 0.00143951015242667*x11) =E= 0; e37.. 0.15558731597959*x10 - x48*(0.299999999999999*x2 + 0.420042004200419*x3 + 0.441069311972204*x4 + 0.411670573863023*x5 + 0.360201456247447*x6 + 0.30254760034903*x7 + 0.247052285556172*x8 + 0.197610748687493*x9 + 0.15558731597959*x10 + 0.120982941684104*x11) =E= 0; e38.. 0.266899105175344*x10 - x49*(0.0899789978997899*x3 + 0.188993694328424*x4 + 0.264632763149874*x5 + 0.308773522162667*x6 + 0.324235367869763*x7 + 0.317759744553093*x8 + 0.296571521818452*x9 + 0.266899105175344*x10 + 0.233513342319487*x11) =E= 0; e39.. 0.266949986712887*x10 - x50*(0.026981099790315*x4 + 0.0755697503379837*x5 + 0.132281083087121*x6 + 0.185233220498984*x7 + 0.22694961744096*x8 + 0.25421627517133*x9 + 0.266949986712887*x10 + 0.266961437732522*x11) =E= 0; e40.. 0.171561639066158*x10 - x51*(0.00808866220581916*x5 + 0.0283216463789187* x6 + 0.0594967092564436*x7 + 0.0972085184322643*x8 + 0.136128890917752*x9 + 0.171561639066158*x10 + 0.200192450750305*x11) =E= 0; e41.. 0.0734703645857939*x10 - x52*(0.00242433293003544*x6 + 0.0101872919521249 *x7 + 0.0249702818996627*x8 + 0.0466305167574201*x9 + 0.0734703645857939* x10 + 0.102892337231952*x11) =E= 0; e42.. 0.0209655320789341*x10 - x53*(0.000726450938014618*x7 + 0.00356174664425821*x8 + 0.0099784508208397*x9 + 0.0209655320789341*x10 + 0.0367069932830306*x11) =E= 0; e43.. 0.00384420873582218*x10 - x54*(0.000217629988834878*x8 + 0.00121958164462655*x9 + 0.00384420873582218*x10 + 0.00897533537960286* x11) =E= 0; e44.. 0.000410977166249314*x10 - x55*(6.51822832565586e-5*x9 + 0.000410977166249314*x10 + 0.00143951015242667*x11) =E= 0; e45.. 1.95181536733007e-5*x10 - x56*(1.95181536733007e-5*x10 + 0.000136750150848869*x11) =E= 0; e46.. 0.120982941684104*x11 - x57*(0.299999999999999*x2 + 0.420042004200419*x3 + 0.441069311972204*x4 + 0.411670573863023*x5 + 0.360201456247447*x6 + 0.30254760034903*x7 + 0.247052285556172*x8 + 0.197610748687493*x9 + 0.15558731597959*x10 + 0.120982941684104*x11) =E= 0; e47.. 0.233513342319487*x11 - x58*(0.0899789978997899*x3 + 0.188993694328424*x4 + 0.264632763149874*x5 + 0.308773522162667*x6 + 0.324235367869763*x7 + 0.317759744553093*x8 + 0.296571521818452*x9 + 0.266899105175344*x10 + 0.233513342319487*x11) =E= 0; e48.. 0.266961437732522*x11 - x59*(0.026981099790315*x4 + 0.0755697503379837*x5 + 0.132281083087121*x6 + 0.185233220498984*x7 + 0.22694961744096*x8 + 0.25421627517133*x9 + 0.266949986712887*x10 + 0.266961437732522*x11) =E= 0; e49.. 0.200192450750305*x11 - x60*(0.00808866220581916*x5 + 0.0283216463789187* x6 + 0.0594967092564436*x7 + 0.0972085184322643*x8 + 0.136128890917752*x9 + 0.171561639066158*x10 + 0.200192450750305*x11) =E= 0; e50.. 0.102892337231952*x11 - x61*(0.00242433293003544*x6 + 0.0101872919521249* x7 + 0.0249702818996627*x8 + 0.0466305167574201*x9 + 0.0734703645857939* x10 + 0.102892337231952*x11) =E= 0; e51.. 0.0367069932830306*x11 - x62*(0.000726450938014618*x7 + 0.00356174664425821*x8 + 0.0099784508208397*x9 + 0.0209655320789341*x10 + 0.0367069932830306*x11) =E= 0; e52.. 0.00897533537960286*x11 - x63*(0.000217629988834878*x8 + 0.00121958164462655*x9 + 0.00384420873582218*x10 + 0.00897533537960286* x11) =E= 0; e53.. 0.00143951015242667*x11 - x64*(6.51822832565586e-5*x9 + 0.000410977166249314*x10 + 0.00143951015242667*x11) =E= 0; e54.. 0.000136750150848869*x11 - x65*(1.95181536733007e-5*x10 + 0.000136750150848869*x11) =E= 0; e55.. 5.84313858841381e-6*x11 - 5.84313858841381e-6*x66*x11 =E= 0; e56.. 0.300000000000001*x2 - 424*x12 - x67 + x77 =E= 0; e57.. 0.510021002100211*x3 - 424*x13 - 208*x14 - x68 + x78 =E= 0; e58.. 0.657044106090946*x4 - 424*x15 - 208*x16 - 243*x17 - x69 + x79 =E= 0; e59.. 0.7599617495567*x5 - 424*x18 - 208*x19 - 243*x20 - 191*x21 - x70 + x80 =E= 0; e60.. 0.83200204080619*x6 - 424*x22 - 208*x23 - 243*x24 - 191*x25 - 79*x26 - x71 + x81 =E= 0; e61.. 0.882426640864363*x7 - 424*x27 - 208*x28 - 243*x29 - 191*x30 - 79*x31 - 31*x32 - x72 + x82 =E= 0; e62.. 0.917719824515245*x8 - 424*x33 - 208*x34 - 243*x35 - 191*x36 - 79*x37 - 31*x38 - 10*x39 - x73 + x83 =E= 0; e63.. 0.942421168101182*x9 - 424*x40 - 208*x41 - 243*x42 - 191*x43 - 79*x44 - 31*x45 - 10*x46 - 2*x47 - x74 + x84 =E= 0; e64.. 0.959708647654471*x10 - 424*x48 - 208*x49 - 243*x50 - 191*x51 - 79*x52 - 31*x53 - 10*x54 - 2*x55 - x75 + x85 =E= 0; e65.. 0.971806941822881*x11 - 424*x57 - 208*x58 - 243*x59 - 191*x60 - 79*x61 - 31*x62 - 10*x63 - 2*x64 - x76 + x86 =E= 0; e66.. x2 + 2*x3 + 3*x4 + 4*x5 + 5*x6 + 6*x7 + 7*x8 + 8*x9 + 9*x10 + 10*x11 =E= 10000; e67.. x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 =G= 424; e68.. x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 =G= 208; e69.. x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 =G= 243; e70.. x5 + x6 + x7 + x8 + x9 + x10 + x11 =G= 191; e71.. x6 + x7 + x8 + x9 + x10 + x11 =G= 79; e72.. x7 + x8 + x9 + x10 + x11 =G= 31; e73.. x8 + x9 + x10 + x11 =G= 10; e74.. x9 + x10 + x11 =G= 2; e75.. x10 + x11 =G= 0; e76.. x11 =G= 0; e77.. - x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 =E= 0; e78.. - x67 - x68 - x69 - x70 - x71 - x72 - x73 - x74 - x75 - x76 - x77 - x78 - x79 - x80 - x81 - x82 - x83 - x84 - x85 - x86 + objvar =E= 0; * set non-default bounds x2.up = 10000; x3.up = 10000; x4.up = 10000; x5.up = 10000; x6.up = 10000; x7.up = 10000; x8.up = 10000; x9.up = 10000; x10.up = 10000; x11.up = 10000; x12.up = 1; x13.up = 1; x14.up = 1; x15.up = 1; x16.up = 1; x17.up = 1; x18.up = 1; x19.up = 1; x20.up = 1; x21.up = 1; x22.up = 1; x23.up = 1; x24.up = 1; x25.up = 1; x26.up = 1; x27.up = 1; x28.up = 1; x29.up = 1; x30.up = 1; x31.up = 1; x32.up = 1; x33.up = 1; x34.up = 1; x35.up = 1; x36.up = 1; x37.up = 1; x38.up = 1; x39.up = 1; x40.up = 1; x41.up = 1; x42.up = 1; x43.up = 1; x44.up = 1; x45.up = 1; x46.up = 1; x47.up = 1; x48.up = 1; x49.up = 1; x50.up = 1; x51.up = 1; x52.up = 1; x53.up = 1; x54.up = 1; x55.up = 1; x56.up = 1; x57.up = 1; x58.up = 1; x59.up = 1; x60.up = 1; x61.up = 1; x62.up = 1; x63.up = 1; x64.up = 1; x65.up = 1; x66.up = 1; x67.up = 1000; x68.up = 1000; x69.up = 1000; x70.up = 1000; x71.up = 1000; x72.up = 1000; x73.up = 1000; x74.up = 1000; x75.up = 1000; x76.up = 1000; x77.up = 1000; x78.up = 1000; x79.up = 1000; x80.up = 1000; x81.up = 1000; x82.up = 1000; x83.up = 1000; x84.up = 1000; x85.up = 1000; x86.up = 1000; * set non-default levels x2.l = 1; x3.l = 1; x4.l = 1; x5.l = 1; x6.l = 1; x7.l = 1; x8.l = 1; x9.l = 1; x10.l = 1; x11.l = 1; x12.l = 0.01; x13.l = 0.01; x14.l = 0.01; x15.l = 0.01; x16.l = 0.01; x17.l = 0.01; x18.l = 0.01; x19.l = 0.01; x20.l = 0.01; x21.l = 0.01; x22.l = 0.01; x23.l = 0.01; x24.l = 0.01; x25.l = 0.01; x26.l = 0.01; x27.l = 0.01; x28.l = 0.01; x29.l = 0.01; x30.l = 0.01; x31.l = 0.01; x32.l = 0.01; x33.l = 0.01; x34.l = 0.01; x35.l = 0.01; x36.l = 0.01; x37.l = 0.01; x38.l = 0.01; x39.l = 0.01; x40.l = 0.01; x41.l = 0.01; x42.l = 0.01; x43.l = 0.01; x44.l = 0.01; x45.l = 0.01; x46.l = 0.01; x47.l = 0.01; x48.l = 0.01; x49.l = 0.01; x50.l = 0.01; x51.l = 0.01; x52.l = 0.01; x53.l = 0.01; x54.l = 0.01; x55.l = 0.01; x56.l = 0.01; x57.l = 0.01; x58.l = 0.01; x59.l = 0.01; x60.l = 0.01; x61.l = 0.01; x62.l = 0.01; x63.l = 0.01; x64.l = 0.01; x65.l = 0.01; x66.l = 0.01; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91