MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Removed Instance bearing
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 1.95173322 (ANTIGONE) 1.90809929 (BARON) 1.86055753 (COUENNE) 1.95173322 (LINDO) 1.94733263 (SCIP) |
Referencesⓘ | Siddall, James N, Optimal Engineering Design: Principles and Applications, Marcel Dekker, New York, 1982. Deb, Kalyanmoy and Goyal, Mayank, Optimizing Engineering Designs Using a Combined Genetic Search. In Bäck, Thomas, Ed, Proceedings of the Seventh International Conference on Genetic Algorithms, 1997, 521-528. Coello Coello, Carlos A, Treating Constraints as Objectives for Single-Objective Evolutionary Optimization, Engineering Optimization, 32:3, 2000, 275-308. |
Sourceⓘ | GAMS Model Library model bearing |
Applicationⓘ | Hydrostatic Thrust Bearing Design |
Added to libraryⓘ | 31 Jul 2001 |
Removed from libraryⓘ | 16 Feb 2022 |
Removed becauseⓘ | Difficult numerical behavior. Optimal value changes by > 2% when increasing feasibility tolerance. |
Problem typeⓘ | NLP |
#Variablesⓘ | 13 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 12 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 2 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 12 |
#Linear Constraintsⓘ | 3 |
#Quadratic Constraintsⓘ | 4 |
#Polynomial Constraintsⓘ | 3 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 2 |
Operands in Gen. Nonlin. Functionsⓘ | log log10 vcpower |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 38 |
#Nonlinear Nonzeros in Jacobianⓘ | 28 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 32 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
#Blocks in Hessian of Lagrangianⓘ | 2 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 11 |
Average blocksize in Hessian of Lagrangianⓘ | 6.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 6.0000e-06 |
Maximal coefficientⓘ | 1.0965e+10 |
Infeasibility of initial pointⓘ | 1.008e+05 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 13 10 1 2 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 14 14 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 41 13 28 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,objvar,x6,x7,x8,x9,x10,x11,x12,x13,x14; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13; e1.. 10000*objvar - 10000*x7 - 10000*x8 =E= 0; e2.. -1.42857142857143*x4*x6 + 10000*x8 =E= 0; e3.. 10*x7*x9 - 0.00968946189201592*(x1**4 - x2**4)*x3 =E= 0; e4.. 143.3076*x10*x4 - 10000*x7 =E= 0; e5.. 3.1415927*(0.001*x9)**3*x6 - 6e-6*x3*x4*x13 =E= 0; e6.. 101000*x12*x13 - 1.57079635*x6*x14 =E= 0; e7.. log10(0.8 + 8.112*x3) - 10964781961.4318*x11**(-3.55) =E= 0; e8.. - 0.5*x10 + x11 =E= 560; e9.. x1 - x2 =G= 0; e10.. 0.0307*sqr(x4) - 0.3864*sqr(0.0062831854*x1*x9)*x6 =L= 0; e11.. 101000*x12 - 15707.9635*x14 =L= 0; e12.. -(log(x1) - log(x2)) + x13 =E= 0; e13.. -(sqr(x1) - sqr(x2)) + x14 =E= 0; * set non-default bounds x1.lo = 1; x1.up = 16; x2.lo = 1; x2.up = 16; x3.lo = 1; x3.up = 16; x4.lo = 1; x4.up = 16; x6.lo = 1; x6.up = 1000; x7.lo = 0.0001; x8.lo = 0.0001; x9.lo = 1; x10.up = 50; x11.lo = 100; x12.lo = 1; x13.lo = 0.0001; x14.lo = 0.01; * set non-default levels x1.l = 6; x2.l = 5; x3.l = 6; x4.l = 3; x6.l = 1000; x7.l = 1.6; x8.l = 0.3; x10.l = 50; x11.l = 600; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91