MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance cesam2cent
Illustrates a cross entropy technique for estimating the cells of a consistent SAM assuming that the initial data are inconsistent and measured with error.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | |
Referencesⓘ | Robinson, S, Cattaneo, A, and El-Said, M, Updating and Estimating a Social Accounting Matrix Using Cross Entropy Methods, Economic Systems Research, 13:1, 2001, 47-64. Golan, A, Judge, G, and Miller, D, Maximum Entropy Econometrics, John Wiley and Sons, 1996. Judge, G and Mittelhammer, R C, An Information Theoretic Approach to Econometrics, Cambridge University Press, New York, NY, 2012. |
Sourceⓘ | GAMS Model Library model cesam2 |
Applicationⓘ | Social Accounting Matrix Balancing |
Added to libraryⓘ | 18 Aug 2014 |
Problem typeⓘ | NLP |
#Variablesⓘ | 316 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 207 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | nonconcave |
#Nonzeros in Objectiveⓘ | 157 |
#Nonlinear Nonzeros in Objectiveⓘ | 157 |
#Constraintsⓘ | 165 |
#Linear Constraintsⓘ | 124 |
#Quadratic Constraintsⓘ | 28 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 13 |
Operands in Gen. Nonlin. Functionsⓘ | centropy exp |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 663 |
#Nonlinear Nonzeros in Jacobianⓘ | 69 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 226 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 170 |
#Blocks in Hessian of Lagrangianⓘ | 179 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 6 |
Average blocksize in Hessian of Lagrangianⓘ | 1.156425 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.4525e-04 |
Maximal coefficientⓘ | 1.1121e+01 |
Infeasibility of initial pointⓘ | 0.3965 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 166 166 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 317 317 0 0 0 0 0 0 * FX 53 * * Nonzero counts * Total const NL DLL * 821 595 226 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103 ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116 ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129 ,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142 ,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155 ,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168 ,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181 ,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194 ,x195,x196,x197,x198,x199,x200,x201,x202,x203,x204,x205,x206,x207 ,x208,x209,x210,x211,x212,x213,x214,x215,x216,x217,x218,x219,x220 ,x221,x222,x223,x224,x225,x226,x227,x228,x229,x230,x231,x232,x233 ,x234,x235,x236,x237,x238,x239,x240,x241,x242,x243,x244,x245,x246 ,x247,x248,x249,x250,x251,x252,x253,x254,x255,x256,x257,x258,x259 ,x260,x261,x262,x263,x264,x265,x266,x267,x268,x269,x270,x271,x272 ,x273,x274,x275,x276,x277,x278,x279,x280,x281,x282,x283,x284,x285 ,x286,x287,x288,x289,x290,x291,x292,x293,x294,x295,x296,x297,x298 ,x299,x300,x301,x302,x303,x304,x305,x306,x307,x308,x309,x310,x311 ,x312,x313,x314,x315,x316,objvar; Positive Variables x160,x161,x162,x163,x164,x165,x166,x167,x168,x169,x170 ,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181,x182,x183 ,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194,x195,x196 ,x197,x198,x199,x200,x201,x202,x203,x204,x205,x206,x207,x208,x209 ,x210,x211,x212,x213,x214,x215,x216,x217,x218,x219,x220,x221,x222 ,x223,x224,x225,x226,x227,x228,x229,x230,x231,x232,x233,x234,x235 ,x236,x237,x238,x239,x240,x241,x242,x243,x244,x245,x246,x247,x248 ,x249,x250,x251,x252,x253,x254,x255,x256,x257,x258,x259,x260,x261 ,x262,x263,x264,x265,x266,x267,x268,x269,x270,x271,x272,x273,x274 ,x275,x276,x277,x278,x279,x280,x281,x282,x283,x284,x285,x286,x287 ,x288,x289,x290,x291,x292,x293,x294,x295,x296,x297,x298,x299,x300 ,x301,x302,x303,x304,x305,x306,x307,x308,x309,x310,x311,x312,x313 ,x314,x315,x316; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166; e1.. x112 - x121 =E= 18.4364105; e2.. x113 - x122 =E= 21.1551365; e3.. x114 - x123 =E= 9.78976; e4.. x115 - x124 =E= 3.673953; e5.. x116 - x125 =E= 9.6863185; e6.. x117 - x126 =E= 1.3701; e7.. x118 - x127 =E= 1.9123; e8.. x119 - x128 =E= 2.398969; e9.. x120 - x129 =E= 5.5690645; e10.. x29 + x30 + x31 + x32 + x33 + x34 + x35 + x36 + x37 - x112 =E= 0; e11.. x38 + x39 + x40 + x41 + x42 + x43 + x44 + x45 + x46 - x113 =E= 0; e12.. x47 + x48 + x49 + x50 + x51 + x52 + x53 + x54 + x55 - x114 =E= 0; e13.. x56 + x57 + x58 + x59 + x60 + x61 + x62 + x63 + x64 - x115 =E= 0; e14.. x65 + x66 + x67 + x68 + x69 + x70 + x71 + x72 + x73 - x116 =E= 0; e15.. x74 + x75 + x76 + x77 + x78 + x79 + x80 + x81 + x82 - x117 =E= 0; e16.. x83 + x84 + x85 + x86 + x87 + x88 + x89 + x90 + x91 - x118 =E= 0; e17.. x92 + x93 + x94 + x95 + x96 + x97 + x98 + x99 + x100 - x119 =E= 0; e18.. x101 + x102 + x103 + x104 + x105 + x106 + x107 + x108 + x109 - x120 =E= 0; e19.. x29 + x38 + x47 + x56 + x65 + x74 + x83 + x92 + x101 - x112 =E= 0; e20.. x30 + x39 + x48 + x57 + x66 + x75 + x84 + x93 + x102 - x113 =E= 0; e21.. x31 + x40 + x49 + x58 + x67 + x76 + x85 + x94 + x103 - x114 =E= 0; e22.. x32 + x41 + x50 + x59 + x68 + x77 + x86 + x95 + x104 - x115 =E= 0; e23.. x33 + x42 + x51 + x60 + x69 + x78 + x87 + x96 + x105 - x116 =E= 0; e24.. x34 + x43 + x52 + x61 + x70 + x79 + x88 + x97 + x106 - x117 =E= 0; e25.. x35 + x44 + x53 + x62 + x71 + x80 + x89 + x98 + x107 - x118 =E= 0; e26.. x36 + x45 + x54 + x63 + x72 + x81 + x90 + x99 + x108 - x119 =E= 0; e27.. x37 + x46 + x55 + x64 + x73 + x82 + x91 + x100 + x109 - x120 =E= 0; e28.. -x1*x113 + x30 =E= 0; e29.. -x2*x116 + x33 =E= 0; e30.. -x3*x117 + x34 =E= 0; e31.. -x4*x120 + x37 =E= 0; e32.. -x5*x112 + x38 =E= 0; e33.. -x6*x116 + x42 =E= 0; e34.. -x7*x117 + x43 =E= 0; e35.. -x8*x118 + x44 =E= 0; e36.. -x9*x119 + x45 =E= 0; e37.. -x10*x112 + x47 =E= 0; e38.. -x11*x114 + x58 =E= 0; e39.. -x12*x117 + x61 =E= 0; e40.. -x13*x114 + x67 =E= 0; e41.. -x14*x115 + x68 =E= 0; e42.. -x15*x117 + x70 =E= 0; e43.. -x16*x120 + x73 =E= 0; e44.. -x17*x112 + x74 =E= 0; e45.. -x18*x113 + x75 =E= 0; e46.. -x19*x114 + x76 =E= 0; e47.. -x20*x115 + x77 =E= 0; e48.. -x21*x116 + x78 =E= 0; e49.. -x22*x120 + x91 =E= 0; e50.. -x23*x115 + x95 =E= 0; e51.. -x24*x116 + x96 =E= 0; e52.. -x25*x117 + x97 =E= 0; e53.. -x26*x118 + x98 =E= 0; e54.. -x27*x120 + x100 =E= 0; e55.. -x28*x113 + x102 =E= 0; e56.. x30 - x132 =E= 14.827424; e57.. x34 - x134 =E= -0.000327; e58.. x37 - x135 =E= 1.488157; e59.. x43 - x138 =E= 1.5645; e60.. x44 - x139 =E= 2.5185; e61.. x45 - x140 =E= 2.597798; e62.. x61 - x143 =E= 0.033; e63.. x70 - x146 =E= 0.0296; e64.. x73 - x147 =E= 0.2; e65.. x75 - x149 =E= 0.3574; e66.. x91 - x153 =E= 1.7123; e67.. x97 - x156 =E= -0.356673; e68.. x98 - x157 =E= -0.4062; e69.. x100 - x158 =E= 2.163857; e70.. x102 - x159 =E= 5.573815; e71.. -0.213455359357076*exp(x133) + x2 =E= 0; e72.. -0.428981457932639*exp(x136) + x5 =E= 0; e73.. -0.706421402256235*exp(x137) + x6 =E= 0; e74.. -0.531271066405917*exp(x141) + x10 =E= 0; e75.. -0.37852116602787*exp(x142) + x11 =E= 0; e76.. -0.613866884603052*exp(x144) + x13 =E= 0; e77.. -0.912812569152467*exp(x145) + x14 =E= 0; e78.. -0.0397474756614438*exp(x148) + x17 =E= 0; e79.. -0.00761194936907785*exp(x150) + x19 =E= 0; e80.. -0.0456959504315114*exp(x151) + x20 =E= 0; e81.. -0.0141724551070975*exp(x152) + x21 =E= 0; e82.. -0.0414914804160212*exp(x154) + x23 =E= 0; e83.. -0.0659507832795914*exp(x155) + x24 =E= 0; e84.. - x47 + x110 =E= 0; e85.. x34 - x47 - x74 - x75 + x111 =E= 0; e86.. x110 - x130 =E= 9.805414; e87.. x111 - x131 =E= 10.896741; e88.. x121 + 2.765461575*x160 + 1.84364105*x161 + 0.921820525*x162 - 0.921820525*x164 - 1.84364105*x165 - 2.765461575*x166 =E= 0; e89.. x122 + 3.173270475*x167 + 2.11551365*x168 + 1.057756825*x169 - 1.057756825*x171 - 2.11551365*x172 - 3.173270475*x173 =E= 0; e90.. x123 + 1.468464*x174 + 0.978976*x175 + 0.489488*x176 - 0.489488*x178 - 0.978976*x179 - 1.468464*x180 =E= 0; e91.. x124 + 0.55109295*x181 + 0.3673953*x182 + 0.18369765*x183 - 0.18369765*x185 - 0.3673953*x186 - 0.55109295*x187 =E= 0; e92.. x125 + 1.452947775*x188 + 0.96863185*x189 + 0.484315925*x190 - 0.484315925*x192 - 0.96863185*x193 - 1.452947775*x194 =E= 0; e93.. x126 + 0.205515*x195 + 0.13701*x196 + 0.068505*x197 - 0.068505*x199 - 0.13701*x200 - 0.205515*x201 =E= 0; e94.. x127 + 0.286845*x202 + 0.19123*x203 + 0.095615*x204 - 0.095615*x206 - 0.19123*x207 - 0.286845*x208 =E= 0; e95.. x128 + 0.35984535*x209 + 0.2398969*x210 + 0.11994845*x211 - 0.11994845*x213 - 0.2398969*x214 - 0.35984535*x215 =E= 0; e96.. x129 + 0.835359675*x216 + 0.55690645*x217 + 0.278453225*x218 - 0.278453225*x220 - 0.55690645*x221 - 0.835359675*x222 =E= 0; e97.. x130 + 1.4708121*x223 + 0.73540605*x224 - 0.73540605*x226 - 1.4708121*x227 =E= 0; e98.. x131 + 1.63451115*x228 + 0.817255575*x229 - 0.817255575*x231 - 1.63451115*x232 =E= 0; e99.. x132 + 11.120568*x233 - 11.120568*x235 =E= 0; e100.. x133 + 0.75*x236 - 0.75*x238 =E= 0; e101.. x134 + 0.00024525*x239 - 0.00024525*x241 =E= 0; e102.. x135 + 1.11611775*x242 - 1.11611775*x244 =E= 0; e103.. x136 + 0.75*x245 - 0.75*x247 =E= 0; e104.. x137 + 0.75*x248 - 0.75*x250 =E= 0; e105.. x138 + 1.173375*x251 - 1.173375*x253 =E= 0; e106.. x139 + 1.888875*x254 - 1.888875*x256 =E= 0; e107.. x140 + 1.9483485*x257 - 1.9483485*x259 =E= 0; e108.. x141 + 0.75*x260 - 0.75*x262 =E= 0; e109.. x142 + 0.75*x263 - 0.75*x265 =E= 0; e110.. x143 + 0.02475*x266 - 0.02475*x268 =E= 0; e111.. x144 + 0.75*x269 - 0.75*x271 =E= 0; e112.. x145 + 0.75*x272 - 0.75*x274 =E= 0; e113.. x146 + 0.0222*x275 - 0.0222*x277 =E= 0; e114.. x147 + 0.15*x278 - 0.15*x280 =E= 0; e115.. x148 + 0.75*x281 - 0.75*x283 =E= 0; e116.. x149 + 0.26805*x284 - 0.26805*x286 =E= 0; e117.. x150 + 0.75*x287 - 0.75*x289 =E= 0; e118.. x151 + 0.75*x290 - 0.75*x292 =E= 0; e119.. x152 + 0.75*x293 - 0.75*x295 =E= 0; e120.. x153 + 1.284225*x296 - 1.284225*x298 =E= 0; e121.. x154 + 0.75*x299 - 0.75*x301 =E= 0; e122.. x155 + 0.75*x302 - 0.75*x304 =E= 0; e123.. x156 + 0.26750475*x305 - 0.26750475*x307 =E= 0; e124.. x157 + 0.30465*x308 - 0.30465*x310 =E= 0; e125.. x158 + 1.62289275*x311 - 1.62289275*x313 =E= 0; e126.. x159 + 4.18036125*x314 - 4.18036125*x316 =E= 0; e127.. x160 + x161 + x162 + x163 + x164 + x165 + x166 =E= 1; e128.. x167 + x168 + x169 + x170 + x171 + x172 + x173 =E= 1; e129.. x174 + x175 + x176 + x177 + x178 + x179 + x180 =E= 1; e130.. x181 + x182 + x183 + x184 + x185 + x186 + x187 =E= 1; e131.. x188 + x189 + x190 + x191 + x192 + x193 + x194 =E= 1; e132.. x195 + x196 + x197 + x198 + x199 + x200 + x201 =E= 1; e133.. x202 + x203 + x204 + x205 + x206 + x207 + x208 =E= 1; e134.. x209 + x210 + x211 + x212 + x213 + x214 + x215 =E= 1; e135.. x216 + x217 + x218 + x219 + x220 + x221 + x222 =E= 1; e136.. x223 + x224 + x225 + x226 + x227 =E= 1; e137.. x228 + x229 + x230 + x231 + x232 =E= 1; e138.. x233 + x234 + x235 =E= 1; e139.. x236 + x237 + x238 =E= 1; e140.. x239 + x240 + x241 =E= 1; e141.. x242 + x243 + x244 =E= 1; e142.. x245 + x246 + x247 =E= 1; e143.. x248 + x249 + x250 =E= 1; e144.. x251 + x252 + x253 =E= 1; e145.. x254 + x255 + x256 =E= 1; e146.. x257 + x258 + x259 =E= 1; e147.. x260 + x261 + x262 =E= 1; e148.. x263 + x264 + x265 =E= 1; e149.. x266 + x267 + x268 =E= 1; e150.. x269 + x270 + x271 =E= 1; e151.. x272 + x273 + x274 =E= 1; e152.. x275 + x276 + x277 =E= 1; e153.. x278 + x279 + x280 =E= 1; e154.. x281 + x282 + x283 =E= 1; e155.. x284 + x285 + x286 =E= 1; e156.. x287 + x288 + x289 =E= 1; e157.. x290 + x291 + x292 =E= 1; e158.. x293 + x294 + x295 =E= 1; e159.. x296 + x297 + x298 =E= 1; e160.. x299 + x300 + x301 =E= 1; e161.. x302 + x303 + x304 =E= 1; e162.. x305 + x306 + x307 =E= 1; e163.. x308 + x309 + x310 =E= 1; e164.. x311 + x312 + x313 =E= 1; e165.. x314 + x315 + x316 =E= 1; e166.. -(Centropy(x233,0.0555555555555556) + Centropy(x234,0.888888888888889) + Centropy(x235,0.0555555555555556) + Centropy(x236,0.0555555555555556) + Centropy(x237,0.888888888888889) + Centropy(x238,0.0555555555555556) + Centropy(x239,0.0555555555555556) + Centropy(x240,0.888888888888889) + Centropy(x241,0.0555555555555556) + Centropy(x242,0.0555555555555556) + Centropy(x243,0.888888888888889) + Centropy(x244,0.0555555555555556) + Centropy(x245,0.0555555555555556) + Centropy(x246,0.888888888888889) + Centropy(x247,0.0555555555555556) + Centropy(x248,0.0555555555555556) + Centropy(x249,0.888888888888889) + Centropy(x250,0.0555555555555556) + Centropy(x251,0.0555555555555556) + Centropy(x252,0.888888888888889) + Centropy(x253,0.0555555555555556) + Centropy(x254,0.0555555555555556) + Centropy(x255,0.888888888888889) + Centropy(x256,0.0555555555555556) + Centropy(x257,0.0555555555555556) + Centropy(x258,0.888888888888889) + Centropy(x259,0.0555555555555556) + Centropy(x260,0.0555555555555556) + Centropy(x261,0.888888888888889) + Centropy(x262,0.0555555555555556) + Centropy(x263,0.0555555555555556) + Centropy(x264,0.888888888888889) + Centropy(x265,0.0555555555555556) + Centropy(x266,0.0555555555555556) + Centropy(x267,0.888888888888889) + Centropy(x268,0.0555555555555556) + Centropy(x269,0.0555555555555556) + Centropy(x270,0.888888888888889) + Centropy(x271,0.0555555555555556) + Centropy(x272,0.0555555555555556) + Centropy(x273,0.888888888888889) + Centropy(x274,0.0555555555555556) + Centropy(x275,0.0555555555555556) + Centropy(x276,0.888888888888889) + Centropy(x277,0.0555555555555556) + Centropy(x278,0.0555555555555556) + Centropy(x279,0.888888888888889) + Centropy(x280,0.0555555555555556) + Centropy(x281,0.0555555555555556) + Centropy(x282,0.888888888888889) + Centropy(x283,0.0555555555555556) + Centropy(x284,0.0555555555555556) + Centropy(x285,0.888888888888889) + Centropy(x286,0.0555555555555556) + Centropy(x287,0.0555555555555556) + Centropy(x288,0.888888888888889) + Centropy(x289,0.0555555555555556) + Centropy(x290,0.0555555555555556) + Centropy(x291,0.888888888888889) + Centropy(x292,0.0555555555555556) + Centropy(x293,0.0555555555555556) + Centropy(x294,0.888888888888889) + Centropy(x295,0.0555555555555556) + Centropy(x296,0.0555555555555556) + Centropy(x297,0.888888888888889) + Centropy(x298,0.0555555555555556) + Centropy(x299,0.0555555555555556) + Centropy(x300,0.888888888888889) + Centropy(x301,0.0555555555555556) + Centropy(x302,0.0555555555555556) + Centropy(x303,0.888888888888889) + Centropy(x304,0.0555555555555556) + Centropy(x305,0.0555555555555556) + Centropy(x306,0.888888888888889) + Centropy(x307,0.0555555555555556) + Centropy(x308,0.0555555555555556) + Centropy(x309,0.888888888888889) + Centropy(x310,0.0555555555555556) + Centropy(x311,0.0555555555555556) + Centropy(x312,0.888888888888889) + Centropy(x313,0.0555555555555556) + Centropy(x314,0.0555555555555556) + Centropy(x315,0.888888888888889) + Centropy(x316,0.0555555555555556) + Centropy(x160,0.142857142857143) + Centropy(x161,0.142857142857143) + Centropy(x162,0.142857142857143) + Centropy(x163,0.142857142857143) + Centropy(x164,0.142857142857143) + Centropy(x165,0.142857142857143) + Centropy(x166,0.142857142857143) + Centropy(x167,0.142857142857143) + Centropy(x168,0.142857142857143) + Centropy(x169,0.142857142857143) + Centropy(x170,0.142857142857143) + Centropy(x171,0.142857142857143) + Centropy(x172,0.142857142857143) + Centropy(x173,0.142857142857143) + Centropy(x174,0.142857142857143) + Centropy(x175,0.142857142857143) + Centropy(x176,0.142857142857143) + Centropy(x177,0.142857142857143) + Centropy(x178,0.142857142857143) + Centropy(x179,0.142857142857143) + Centropy(x180,0.142857142857143) + Centropy(x181,0.142857142857143) + Centropy(x182,0.142857142857143) + Centropy(x183,0.142857142857143) + Centropy(x184,0.142857142857143) + Centropy(x185,0.142857142857143) + Centropy(x186,0.142857142857143) + Centropy(x187,0.142857142857143) + Centropy(x188,0.142857142857143) + Centropy(x189,0.142857142857143) + Centropy(x190,0.142857142857143) + Centropy(x191,0.142857142857143) + Centropy(x192,0.142857142857143) + Centropy(x193,0.142857142857143) + Centropy(x194,0.142857142857143) + Centropy(x195,0.142857142857143) + Centropy(x196,0.142857142857143) + Centropy(x197,0.142857142857143) + Centropy(x198,0.142857142857143) + Centropy(x199,0.142857142857143) + Centropy(x200,0.142857142857143) + Centropy(x201,0.142857142857143) + Centropy(x202,0.142857142857143) + Centropy(x203,0.142857142857143) + Centropy(x204,0.142857142857143) + Centropy(x205,0.142857142857143) + Centropy(x206,0.142857142857143) + Centropy(x207,0.142857142857143) + Centropy(x208,0.142857142857143) + Centropy(x209,0.142857142857143) + Centropy(x210,0.142857142857143) + Centropy(x211,0.142857142857143) + Centropy(x212,0.142857142857143) + Centropy(x213,0.142857142857143) + Centropy(x214,0.142857142857143) + Centropy(x215,0.142857142857143) + Centropy(x216,0.142857142857143) + Centropy(x217,0.142857142857143) + Centropy(x218,0.142857142857143) + Centropy(x219,0.142857142857143) + Centropy(x220,0.142857142857143) + Centropy(x221,0.142857142857143) + Centropy(x222,0.142857142857143) + Centropy(x223,0.00617283950617284) + Centropy(x224,0.197530864197531) + Centropy(x225,0.592592592592593) + Centropy(x226,0.197530864197531) + Centropy(x227,0.00617283950617284) + Centropy(x228,0.00617283950617284) + Centropy(x229,0.197530864197531) + Centropy(x230,0.592592592592593) + Centropy(x231,0.197530864197531) + Centropy(x232,0.00617283950617284)) + objvar =E= 0; * set non-default bounds x29.fx = 0; x31.fx = 0; x32.fx = 0; x35.fx = 0; x36.fx = 0; x39.fx = 0; x40.fx = 0; x41.fx = 0; x46.fx = 0; x48.fx = 0; x49.fx = 0; x50.fx = 0; x51.fx = 0; x52.fx = 0; x53.fx = 0; x54.fx = 0; x55.fx = 0; x56.fx = 0; x57.fx = 0; x59.fx = 0; x60.fx = 0; x62.fx = 0; x63.fx = 0; x64.fx = 0; x65.fx = 0; x66.fx = 0; x69.fx = 0; x71.fx = 0; x72.fx = 0; x79.fx = 0; x80.fx = 0; x81.fx = 0; x82.fx = 0; x83.fx = 0; x84.fx = 0; x85.fx = 0; x86.fx = 0; x87.fx = 0; x88.fx = 0; x89.fx = 0; x90.fx = 0; x92.fx = 0; x93.fx = 0; x94.fx = 0; x99.fx = 0; x101.fx = 0; x103.fx = 0; x104.fx = 0; x105.fx = 0; x106.fx = 0; x107.fx = 0; x108.fx = 0; x109.fx = 0; x160.up = 1; x161.up = 1; x162.up = 1; x163.up = 1; x164.up = 1; x165.up = 1; x166.up = 1; x167.up = 1; x168.up = 1; x169.up = 1; x170.up = 1; x171.up = 1; x172.up = 1; x173.up = 1; x174.up = 1; x175.up = 1; x176.up = 1; x177.up = 1; x178.up = 1; x179.up = 1; x180.up = 1; x181.up = 1; x182.up = 1; x183.up = 1; x184.up = 1; x185.up = 1; x186.up = 1; x187.up = 1; x188.up = 1; x189.up = 1; x190.up = 1; x191.up = 1; x192.up = 1; x193.up = 1; x194.up = 1; x195.up = 1; x196.up = 1; x197.up = 1; x198.up = 1; x199.up = 1; x200.up = 1; x201.up = 1; x202.up = 1; x203.up = 1; x204.up = 1; x205.up = 1; x206.up = 1; x207.up = 1; x208.up = 1; x209.up = 1; x210.up = 1; x211.up = 1; x212.up = 1; x213.up = 1; x214.up = 1; x215.up = 1; x216.up = 1; x217.up = 1; x218.up = 1; x219.up = 1; x220.up = 1; x221.up = 1; x222.up = 1; x223.up = 1; x224.up = 1; x225.up = 1; x226.up = 1; x227.up = 1; x228.up = 1; x229.up = 1; x230.up = 1; x231.up = 1; x232.up = 1; x233.up = 1; x234.up = 1; x235.up = 1; x236.up = 1; x237.up = 1; x238.up = 1; x239.up = 1; x240.up = 1; x241.up = 1; x242.up = 1; x243.up = 1; x244.up = 1; x245.up = 1; x246.up = 1; x247.up = 1; x248.up = 1; x249.up = 1; x250.up = 1; x251.up = 1; x252.up = 1; x253.up = 1; x254.up = 1; x255.up = 1; x256.up = 1; x257.up = 1; x258.up = 1; x259.up = 1; x260.up = 1; x261.up = 1; x262.up = 1; x263.up = 1; x264.up = 1; x265.up = 1; x266.up = 1; x267.up = 1; x268.up = 1; x269.up = 1; x270.up = 1; x271.up = 1; x272.up = 1; x273.up = 1; x274.up = 1; x275.up = 1; x276.up = 1; x277.up = 1; x278.up = 1; x279.up = 1; x280.up = 1; x281.up = 1; x282.up = 1; x283.up = 1; x284.up = 1; x285.up = 1; x286.up = 1; x287.up = 1; x288.up = 1; x289.up = 1; x290.up = 1; x291.up = 1; x292.up = 1; x293.up = 1; x294.up = 1; x295.up = 1; x296.up = 1; x297.up = 1; x298.up = 1; x299.up = 1; x300.up = 1; x301.up = 1; x302.up = 1; x303.up = 1; x304.up = 1; x305.up = 1; x306.up = 1; x307.up = 1; x308.up = 1; x309.up = 1; x310.up = 1; x311.up = 1; x312.up = 1; x313.up = 1; x314.up = 1; x315.up = 1; x316.up = 1; * set non-default levels x1.l = 0.714277270296959; x2.l = 0.213455359357076; x3.l = -0.000257460042516337; x4.l = 0.267446625046681; x5.l = 0.428981457932639; x6.l = 0.706421402256235; x7.l = 1.23179277222266; x8.l = 1.1923022297969; x9.l = 1; x10.l = 0.531271066405917; x11.l = 0.37852116602787; x12.l = 0.0259822061255019; x13.l = 0.613866884603052; x14.l = 0.912812569152467; x15.l = 0.0233052515549957; x16.l = 0.0359433346141142; x17.l = 0.0397474756614438; x18.l = 0.0172169283352343; x19.l = 0.00761194936907785; x20.l = 0.0456959504315114; x21.l = 0.0141724551070975; x22.l = 0.307728859298738; x23.l = 0.0414914804160212; x24.l = 0.0659507832795914; x25.l = -0.280822769860641; x26.l = -0.192302229796904; x27.l = 0.388881181040466; x28.l = 0.268505801367806; x30.l = 14.827424; x33.l = 2.101049; x34.l = -0.000327; x37.l = 1.488157; x38.l = 7.917504; x42.l = 6.953332; x43.l = 1.5645; x44.l = 2.5185; x45.l = 2.597798; x47.l = 9.805414; x58.l = 3.699706; x61.l = 0.033; x67.l = 6; x68.l = 3.3; x70.l = 0.0296; x73.l = 0.2; x74.l = 0.7336; x75.l = 0.3574; x76.l = 0.0744; x77.l = 0.1652; x78.l = 0.1395; x91.l = 1.7123; x95.l = 0.15; x96.l = 0.649156; x97.l = -0.356673; x98.l = -0.4062; x100.l = 2.163857; x102.l = 5.573815; x110.l = 9.805414; x111.l = 10.896741; x112.l = 18.4364105; x113.l = 21.1551365; x114.l = 9.78976; x115.l = 3.673953; x116.l = 9.6863185; x117.l = 1.3701; x118.l = 1.9123; x119.l = 2.398969; x120.l = 5.5690645; x160.l = 0.142857142857143; x161.l = 0.142857142857143; x162.l = 0.142857142857143; x163.l = 0.142857142857143; x164.l = 0.142857142857143; x165.l = 0.142857142857143; x166.l = 0.142857142857143; x167.l = 0.142857142857143; x168.l = 0.142857142857143; x169.l = 0.142857142857143; x170.l = 0.142857142857143; x171.l = 0.142857142857143; x172.l = 0.142857142857143; x173.l = 0.142857142857143; x174.l = 0.142857142857143; x175.l = 0.142857142857143; x176.l = 0.142857142857143; x177.l = 0.142857142857143; x178.l = 0.142857142857143; x179.l = 0.142857142857143; x180.l = 0.142857142857143; x181.l = 0.142857142857143; x182.l = 0.142857142857143; x183.l = 0.142857142857143; x184.l = 0.142857142857143; x185.l = 0.142857142857143; x186.l = 0.142857142857143; x187.l = 0.142857142857143; x188.l = 0.142857142857143; x189.l = 0.142857142857143; x190.l = 0.142857142857143; x191.l = 0.142857142857143; x192.l = 0.142857142857143; x193.l = 0.142857142857143; x194.l = 0.142857142857143; x195.l = 0.142857142857143; x196.l = 0.142857142857143; x197.l = 0.142857142857143; x198.l = 0.142857142857143; x199.l = 0.142857142857143; x200.l = 0.142857142857143; x201.l = 0.142857142857143; x202.l = 0.142857142857143; x203.l = 0.142857142857143; x204.l = 0.142857142857143; x205.l = 0.142857142857143; x206.l = 0.142857142857143; x207.l = 0.142857142857143; x208.l = 0.142857142857143; x209.l = 0.142857142857143; x210.l = 0.142857142857143; x211.l = 0.142857142857143; x212.l = 0.142857142857143; x213.l = 0.142857142857143; x214.l = 0.142857142857143; x215.l = 0.142857142857143; x216.l = 0.142857142857143; x217.l = 0.142857142857143; x218.l = 0.142857142857143; x219.l = 0.142857142857143; x220.l = 0.142857142857143; x221.l = 0.142857142857143; x222.l = 0.142857142857143; x223.l = 0.00617283950617284; x224.l = 0.197530864197531; x225.l = 0.592592592592593; x226.l = 0.197530864197531; x227.l = 0.00617283950617284; x228.l = 0.00617283950617284; x229.l = 0.197530864197531; x230.l = 0.592592592592593; x231.l = 0.197530864197531; x232.l = 0.00617283950617284; x233.l = 0.0555555555555556; x234.l = 0.888888888888889; x235.l = 0.0555555555555556; x236.l = 0.0555555555555556; x237.l = 0.888888888888889; x238.l = 0.0555555555555556; x239.l = 0.0555555555555556; x240.l = 0.888888888888889; x241.l = 0.0555555555555556; x242.l = 0.0555555555555556; x243.l = 0.888888888888889; x244.l = 0.0555555555555556; x245.l = 0.0555555555555556; x246.l = 0.888888888888889; x247.l = 0.0555555555555556; x248.l = 0.0555555555555556; x249.l = 0.888888888888889; x250.l = 0.0555555555555556; x251.l = 0.0555555555555556; x252.l = 0.888888888888889; x253.l = 0.0555555555555556; x254.l = 0.0555555555555556; x255.l = 0.888888888888889; x256.l = 0.0555555555555556; x257.l = 0.0555555555555556; x258.l = 0.888888888888889; x259.l = 0.0555555555555556; x260.l = 0.0555555555555556; x261.l = 0.888888888888889; x262.l = 0.0555555555555556; x263.l = 0.0555555555555556; x264.l = 0.888888888888889; x265.l = 0.0555555555555556; x266.l = 0.0555555555555556; x267.l = 0.888888888888889; x268.l = 0.0555555555555556; x269.l = 0.0555555555555556; x270.l = 0.888888888888889; x271.l = 0.0555555555555556; x272.l = 0.0555555555555556; x273.l = 0.888888888888889; x274.l = 0.0555555555555556; x275.l = 0.0555555555555556; x276.l = 0.888888888888889; x277.l = 0.0555555555555556; x278.l = 0.0555555555555556; x279.l = 0.888888888888889; x280.l = 0.0555555555555556; x281.l = 0.0555555555555556; x282.l = 0.888888888888889; x283.l = 0.0555555555555556; x284.l = 0.0555555555555556; x285.l = 0.888888888888889; x286.l = 0.0555555555555556; x287.l = 0.0555555555555556; x288.l = 0.888888888888889; x289.l = 0.0555555555555556; x290.l = 0.0555555555555556; x291.l = 0.888888888888889; x292.l = 0.0555555555555556; x293.l = 0.0555555555555556; x294.l = 0.888888888888889; x295.l = 0.0555555555555556; x296.l = 0.0555555555555556; x297.l = 0.888888888888889; x298.l = 0.0555555555555556; x299.l = 0.0555555555555556; x300.l = 0.888888888888889; x301.l = 0.0555555555555556; x302.l = 0.0555555555555556; x303.l = 0.888888888888889; x304.l = 0.0555555555555556; x305.l = 0.0555555555555556; x306.l = 0.888888888888889; x307.l = 0.0555555555555556; x308.l = 0.0555555555555556; x309.l = 0.888888888888889; x310.l = 0.0555555555555556; x311.l = 0.0555555555555556; x312.l = 0.888888888888889; x313.l = 0.0555555555555556; x314.l = 0.0555555555555556; x315.l = 0.888888888888889; x316.l = 0.0555555555555556; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91