MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance chain100
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 0.09367008 (ANTIGONE) -173.12294830 (BARON) -106.89896800 (COUENNE) -72.89931543 (LINDO) -183.97942720 (SCIP) |
Referencesⓘ | Cesari, L, Optimization - Theory and Applications, Springer Verlag, 1983. Dolan, E D and More, J J, Benchmarking Optimization Software with COPS, Tech. Rep. ANL/MCS-246, Mathematics and Computer Science Division, 2000. |
Sourceⓘ | GAMS Model Library model chain, Constrained Optimization Problem Set (COPS) |
Applicationⓘ | Hanging Chain |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 202 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 202 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 202 |
#Nonlinear Nonzeros in Objectiveⓘ | 202 |
#Constraintsⓘ | 101 |
#Linear Constraintsⓘ | 100 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 1 |
Operands in Gen. Nonlin. Functionsⓘ | mul sqr sqrt |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 501 |
#Nonlinear Nonzeros in Jacobianⓘ | 101 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 303 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 101 |
#Blocks in Hessian of Lagrangianⓘ | 101 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.0000e-03 |
Maximal coefficientⓘ | 1.0000e+00 |
Infeasibility of initial pointⓘ | 1.193 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 102 102 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 203 203 0 0 0 0 0 0 * FX 2 * * Nonzero counts * Total const NL DLL * 704 401 303 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103 ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116 ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129 ,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142 ,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155 ,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168 ,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181 ,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194 ,x195,x196,x197,x198,x199,x200,x201,x202,objvar; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102; e1.. -0.005*(sqrt(1 + sqr(x102))*x1 + sqrt(1 + sqr(x103))*x2 + sqrt(1 + sqr( x103))*x2 + sqrt(1 + sqr(x104))*x3 + sqrt(1 + sqr(x104))*x3 + sqrt(1 + sqr(x105))*x4 + sqrt(1 + sqr(x105))*x4 + sqrt(1 + sqr(x106))*x5 + sqrt(1 + sqr(x106))*x5 + sqrt(1 + sqr(x107))*x6 + sqrt(1 + sqr(x107))*x6 + sqrt( 1 + sqr(x108))*x7 + sqrt(1 + sqr(x108))*x7 + sqrt(1 + sqr(x109))*x8 + sqrt(1 + sqr(x109))*x8 + sqrt(1 + sqr(x110))*x9 + sqrt(1 + sqr(x110))*x9 + sqrt(1 + sqr(x111))*x10 + sqrt(1 + sqr(x111))*x10 + sqrt(1 + sqr(x112)) *x11 + sqrt(1 + sqr(x112))*x11 + sqrt(1 + sqr(x113))*x12 + sqrt(1 + sqr( x113))*x12 + sqrt(1 + sqr(x114))*x13 + sqrt(1 + sqr(x114))*x13 + sqrt(1 + sqr(x115))*x14 + sqrt(1 + sqr(x115))*x14 + sqrt(1 + sqr(x116))*x15 + sqrt( 1 + sqr(x116))*x15 + sqrt(1 + sqr(x117))*x16 + sqrt(1 + sqr(x117))*x16 + sqrt(1 + sqr(x118))*x17 + sqrt(1 + sqr(x118))*x17 + sqrt(1 + sqr(x119))* x18 + sqrt(1 + sqr(x119))*x18 + sqrt(1 + sqr(x120))*x19 + sqrt(1 + sqr( x120))*x19 + sqrt(1 + sqr(x121))*x20 + sqrt(1 + sqr(x121))*x20 + sqrt(1 + sqr(x122))*x21 + sqrt(1 + sqr(x122))*x21 + sqrt(1 + sqr(x123))*x22 + sqrt( 1 + sqr(x123))*x22 + sqrt(1 + sqr(x124))*x23 + sqrt(1 + sqr(x124))*x23 + sqrt(1 + sqr(x125))*x24 + sqrt(1 + sqr(x125))*x24 + sqrt(1 + sqr(x126))* x25 + sqrt(1 + sqr(x126))*x25 + sqrt(1 + sqr(x127))*x26 + sqrt(1 + sqr( x127))*x26 + sqrt(1 + sqr(x128))*x27 + sqrt(1 + sqr(x128))*x27 + sqrt(1 + sqr(x129))*x28 + sqrt(1 + sqr(x129))*x28 + sqrt(1 + sqr(x130))*x29 + sqrt( 1 + sqr(x130))*x29 + sqrt(1 + sqr(x131))*x30 + sqrt(1 + sqr(x131))*x30 + sqrt(1 + sqr(x132))*x31 + sqrt(1 + sqr(x132))*x31 + sqrt(1 + sqr(x133))* x32 + sqrt(1 + sqr(x133))*x32 + sqrt(1 + sqr(x134))*x33 + sqrt(1 + sqr( x134))*x33 + sqrt(1 + sqr(x135))*x34 + sqrt(1 + sqr(x135))*x34 + sqrt(1 + sqr(x136))*x35 + sqrt(1 + sqr(x136))*x35 + sqrt(1 + sqr(x137))*x36 + sqrt( 1 + sqr(x137))*x36 + sqrt(1 + sqr(x138))*x37 + sqrt(1 + sqr(x138))*x37 + sqrt(1 + sqr(x139))*x38 + sqrt(1 + sqr(x139))*x38 + sqrt(1 + sqr(x140))* x39 + sqrt(1 + sqr(x140))*x39 + sqrt(1 + sqr(x141))*x40 + sqrt(1 + sqr( x141))*x40 + sqrt(1 + sqr(x142))*x41 + sqrt(1 + sqr(x142))*x41 + sqrt(1 + sqr(x143))*x42 + sqrt(1 + sqr(x143))*x42 + sqrt(1 + sqr(x144))*x43 + sqrt( 1 + sqr(x144))*x43 + sqrt(1 + sqr(x145))*x44 + sqrt(1 + sqr(x145))*x44 + sqrt(1 + sqr(x146))*x45 + sqrt(1 + sqr(x146))*x45 + sqrt(1 + sqr(x147))* x46 + sqrt(1 + sqr(x147))*x46 + sqrt(1 + sqr(x148))*x47 + sqrt(1 + sqr( x148))*x47 + sqrt(1 + sqr(x149))*x48 + sqrt(1 + sqr(x149))*x48 + sqrt(1 + sqr(x150))*x49 + sqrt(1 + sqr(x150))*x49 + sqrt(1 + sqr(x151))*x50 + sqrt( 1 + sqr(x151))*x50 + sqrt(1 + sqr(x152))*x51 + sqrt(1 + sqr(x152))*x51 + sqrt(1 + sqr(x153))*x52 + sqrt(1 + sqr(x153))*x52 + sqrt(1 + sqr(x154))* x53 + sqrt(1 + sqr(x154))*x53 + sqrt(1 + sqr(x155))*x54 + sqrt(1 + sqr( x155))*x54 + sqrt(1 + sqr(x156))*x55 + sqrt(1 + sqr(x156))*x55 + sqrt(1 + sqr(x157))*x56 + sqrt(1 + sqr(x157))*x56 + sqrt(1 + sqr(x158))*x57 + sqrt( 1 + sqr(x158))*x57 + sqrt(1 + sqr(x159))*x58 + sqrt(1 + sqr(x159))*x58 + sqrt(1 + sqr(x160))*x59 + sqrt(1 + sqr(x160))*x59 + sqrt(1 + sqr(x161))* x60 + sqrt(1 + sqr(x161))*x60 + sqrt(1 + sqr(x162))*x61 + sqrt(1 + sqr( x162))*x61 + sqrt(1 + sqr(x163))*x62 + sqrt(1 + sqr(x163))*x62 + sqrt(1 + sqr(x164))*x63 + sqrt(1 + sqr(x164))*x63 + sqrt(1 + sqr(x165))*x64 + sqrt( 1 + sqr(x165))*x64 + sqrt(1 + sqr(x166))*x65 + sqrt(1 + sqr(x166))*x65 + sqrt(1 + sqr(x167))*x66 + sqrt(1 + sqr(x167))*x66 + sqrt(1 + sqr(x168))* x67 + sqrt(1 + sqr(x168))*x67 + sqrt(1 + sqr(x169))*x68 + sqrt(1 + sqr( x169))*x68 + sqrt(1 + sqr(x170))*x69 + sqrt(1 + sqr(x170))*x69 + sqrt(1 + sqr(x171))*x70 + sqrt(1 + sqr(x171))*x70 + sqrt(1 + sqr(x172))*x71 + sqrt( 1 + sqr(x172))*x71 + sqrt(1 + sqr(x173))*x72 + sqrt(1 + sqr(x173))*x72 + sqrt(1 + sqr(x174))*x73 + sqrt(1 + sqr(x174))*x73 + sqrt(1 + sqr(x175))* x74 + sqrt(1 + sqr(x175))*x74 + sqrt(1 + sqr(x176))*x75 + sqrt(1 + sqr( x176))*x75 + sqrt(1 + sqr(x177))*x76 + sqrt(1 + sqr(x177))*x76 + sqrt(1 + sqr(x178))*x77 + sqrt(1 + sqr(x178))*x77 + sqrt(1 + sqr(x179))*x78 + sqrt( 1 + sqr(x179))*x78 + sqrt(1 + sqr(x180))*x79 + sqrt(1 + sqr(x180))*x79 + sqrt(1 + sqr(x181))*x80 + sqrt(1 + sqr(x181))*x80 + sqrt(1 + sqr(x182))* x81 + sqrt(1 + sqr(x182))*x81 + sqrt(1 + sqr(x183))*x82 + sqrt(1 + sqr( x183))*x82 + sqrt(1 + sqr(x184))*x83 + sqrt(1 + sqr(x184))*x83 + sqrt(1 + sqr(x185))*x84 + sqrt(1 + sqr(x185))*x84 + sqrt(1 + sqr(x186))*x85 + sqrt( 1 + sqr(x186))*x85 + sqrt(1 + sqr(x187))*x86 + sqrt(1 + sqr(x187))*x86 + sqrt(1 + sqr(x188))*x87 + sqrt(1 + sqr(x188))*x87 + sqrt(1 + sqr(x189))* x88 + sqrt(1 + sqr(x189))*x88 + sqrt(1 + sqr(x190))*x89 + sqrt(1 + sqr( x190))*x89 + sqrt(1 + sqr(x191))*x90 + sqrt(1 + sqr(x191))*x90 + sqrt(1 + sqr(x192))*x91 + sqrt(1 + sqr(x192))*x91 + sqrt(1 + sqr(x193))*x92 + sqrt( 1 + sqr(x193))*x92 + sqrt(1 + sqr(x194))*x93 + sqrt(1 + sqr(x194))*x93 + sqrt(1 + sqr(x195))*x94 + sqrt(1 + sqr(x195))*x94 + sqrt(1 + sqr(x196))* x95 + sqrt(1 + sqr(x196))*x95 + sqrt(1 + sqr(x197))*x96 + sqrt(1 + sqr( x197))*x96 + sqrt(1 + sqr(x198))*x97 + sqrt(1 + sqr(x198))*x97 + sqrt(1 + sqr(x199))*x98 + sqrt(1 + sqr(x199))*x98 + sqrt(1 + sqr(x200))*x99 + sqrt( 1 + sqr(x200))*x99 + sqrt(1 + sqr(x201))*x100 + sqrt(1 + sqr(x201))*x100 + sqrt(1 + sqr(x202))*x101) + objvar =E= 0; e2.. - x1 + x2 - 0.005*x102 - 0.005*x103 =E= 0; e3.. - x2 + x3 - 0.005*x103 - 0.005*x104 =E= 0; e4.. - x3 + x4 - 0.005*x104 - 0.005*x105 =E= 0; e5.. - x4 + x5 - 0.005*x105 - 0.005*x106 =E= 0; e6.. - x5 + x6 - 0.005*x106 - 0.005*x107 =E= 0; e7.. - x6 + x7 - 0.005*x107 - 0.005*x108 =E= 0; e8.. - x7 + x8 - 0.005*x108 - 0.005*x109 =E= 0; e9.. - x8 + x9 - 0.005*x109 - 0.005*x110 =E= 0; e10.. - x9 + x10 - 0.005*x110 - 0.005*x111 =E= 0; e11.. - x10 + x11 - 0.005*x111 - 0.005*x112 =E= 0; e12.. - x11 + x12 - 0.005*x112 - 0.005*x113 =E= 0; e13.. - x12 + x13 - 0.005*x113 - 0.005*x114 =E= 0; e14.. - x13 + x14 - 0.005*x114 - 0.005*x115 =E= 0; e15.. - x14 + x15 - 0.005*x115 - 0.005*x116 =E= 0; e16.. - x15 + x16 - 0.005*x116 - 0.005*x117 =E= 0; e17.. - x16 + x17 - 0.005*x117 - 0.005*x118 =E= 0; e18.. - x17 + x18 - 0.005*x118 - 0.005*x119 =E= 0; e19.. - x18 + x19 - 0.005*x119 - 0.005*x120 =E= 0; e20.. - x19 + x20 - 0.005*x120 - 0.005*x121 =E= 0; e21.. - x20 + x21 - 0.005*x121 - 0.005*x122 =E= 0; e22.. - x21 + x22 - 0.005*x122 - 0.005*x123 =E= 0; e23.. - x22 + x23 - 0.005*x123 - 0.005*x124 =E= 0; e24.. - x23 + x24 - 0.005*x124 - 0.005*x125 =E= 0; e25.. - x24 + x25 - 0.005*x125 - 0.005*x126 =E= 0; e26.. - x25 + x26 - 0.005*x126 - 0.005*x127 =E= 0; e27.. - x26 + x27 - 0.005*x127 - 0.005*x128 =E= 0; e28.. - x27 + x28 - 0.005*x128 - 0.005*x129 =E= 0; e29.. - x28 + x29 - 0.005*x129 - 0.005*x130 =E= 0; e30.. - x29 + x30 - 0.005*x130 - 0.005*x131 =E= 0; e31.. - x30 + x31 - 0.005*x131 - 0.005*x132 =E= 0; e32.. - x31 + x32 - 0.005*x132 - 0.005*x133 =E= 0; e33.. - x32 + x33 - 0.005*x133 - 0.005*x134 =E= 0; e34.. - x33 + x34 - 0.005*x134 - 0.005*x135 =E= 0; e35.. - x34 + x35 - 0.005*x135 - 0.005*x136 =E= 0; e36.. - x35 + x36 - 0.005*x136 - 0.005*x137 =E= 0; e37.. - x36 + x37 - 0.005*x137 - 0.005*x138 =E= 0; e38.. - x37 + x38 - 0.005*x138 - 0.005*x139 =E= 0; e39.. - x38 + x39 - 0.005*x139 - 0.005*x140 =E= 0; e40.. - x39 + x40 - 0.005*x140 - 0.005*x141 =E= 0; e41.. - x40 + x41 - 0.005*x141 - 0.005*x142 =E= 0; e42.. - x41 + x42 - 0.005*x142 - 0.005*x143 =E= 0; e43.. - x42 + x43 - 0.005*x143 - 0.005*x144 =E= 0; e44.. - x43 + x44 - 0.005*x144 - 0.005*x145 =E= 0; e45.. - x44 + x45 - 0.005*x145 - 0.005*x146 =E= 0; e46.. - x45 + x46 - 0.005*x146 - 0.005*x147 =E= 0; e47.. - x46 + x47 - 0.005*x147 - 0.005*x148 =E= 0; e48.. - x47 + x48 - 0.005*x148 - 0.005*x149 =E= 0; e49.. - x48 + x49 - 0.005*x149 - 0.005*x150 =E= 0; e50.. - x49 + x50 - 0.005*x150 - 0.005*x151 =E= 0; e51.. - x50 + x51 - 0.005*x151 - 0.005*x152 =E= 0; e52.. - x51 + x52 - 0.005*x152 - 0.005*x153 =E= 0; e53.. - x52 + x53 - 0.005*x153 - 0.005*x154 =E= 0; e54.. - x53 + x54 - 0.005*x154 - 0.005*x155 =E= 0; e55.. - x54 + x55 - 0.005*x155 - 0.005*x156 =E= 0; e56.. - x55 + x56 - 0.005*x156 - 0.005*x157 =E= 0; e57.. - x56 + x57 - 0.005*x157 - 0.005*x158 =E= 0; e58.. - x57 + x58 - 0.005*x158 - 0.005*x159 =E= 0; e59.. - x58 + x59 - 0.005*x159 - 0.005*x160 =E= 0; e60.. - x59 + x60 - 0.005*x160 - 0.005*x161 =E= 0; e61.. - x60 + x61 - 0.005*x161 - 0.005*x162 =E= 0; e62.. - x61 + x62 - 0.005*x162 - 0.005*x163 =E= 0; e63.. - x62 + x63 - 0.005*x163 - 0.005*x164 =E= 0; e64.. - x63 + x64 - 0.005*x164 - 0.005*x165 =E= 0; e65.. - x64 + x65 - 0.005*x165 - 0.005*x166 =E= 0; e66.. - x65 + x66 - 0.005*x166 - 0.005*x167 =E= 0; e67.. - x66 + x67 - 0.005*x167 - 0.005*x168 =E= 0; e68.. - x67 + x68 - 0.005*x168 - 0.005*x169 =E= 0; e69.. - x68 + x69 - 0.005*x169 - 0.005*x170 =E= 0; e70.. - x69 + x70 - 0.005*x170 - 0.005*x171 =E= 0; e71.. - x70 + x71 - 0.005*x171 - 0.005*x172 =E= 0; e72.. - x71 + x72 - 0.005*x172 - 0.005*x173 =E= 0; e73.. - x72 + x73 - 0.005*x173 - 0.005*x174 =E= 0; e74.. - x73 + x74 - 0.005*x174 - 0.005*x175 =E= 0; e75.. - x74 + x75 - 0.005*x175 - 0.005*x176 =E= 0; e76.. - x75 + x76 - 0.005*x176 - 0.005*x177 =E= 0; e77.. - x76 + x77 - 0.005*x177 - 0.005*x178 =E= 0; e78.. - x77 + x78 - 0.005*x178 - 0.005*x179 =E= 0; e79.. - x78 + x79 - 0.005*x179 - 0.005*x180 =E= 0; e80.. - x79 + x80 - 0.005*x180 - 0.005*x181 =E= 0; e81.. - x80 + x81 - 0.005*x181 - 0.005*x182 =E= 0; e82.. - x81 + x82 - 0.005*x182 - 0.005*x183 =E= 0; e83.. - x82 + x83 - 0.005*x183 - 0.005*x184 =E= 0; e84.. - x83 + x84 - 0.005*x184 - 0.005*x185 =E= 0; e85.. - x84 + x85 - 0.005*x185 - 0.005*x186 =E= 0; e86.. - x85 + x86 - 0.005*x186 - 0.005*x187 =E= 0; e87.. - x86 + x87 - 0.005*x187 - 0.005*x188 =E= 0; e88.. - x87 + x88 - 0.005*x188 - 0.005*x189 =E= 0; e89.. - x88 + x89 - 0.005*x189 - 0.005*x190 =E= 0; e90.. - x89 + x90 - 0.005*x190 - 0.005*x191 =E= 0; e91.. - x90 + x91 - 0.005*x191 - 0.005*x192 =E= 0; e92.. - x91 + x92 - 0.005*x192 - 0.005*x193 =E= 0; e93.. - x92 + x93 - 0.005*x193 - 0.005*x194 =E= 0; e94.. - x93 + x94 - 0.005*x194 - 0.005*x195 =E= 0; e95.. - x94 + x95 - 0.005*x195 - 0.005*x196 =E= 0; e96.. - x95 + x96 - 0.005*x196 - 0.005*x197 =E= 0; e97.. - x96 + x97 - 0.005*x197 - 0.005*x198 =E= 0; e98.. - x97 + x98 - 0.005*x198 - 0.005*x199 =E= 0; e99.. - x98 + x99 - 0.005*x199 - 0.005*x200 =E= 0; e100.. - x99 + x100 - 0.005*x200 - 0.005*x201 =E= 0; e101.. - x100 + x101 - 0.005*x201 - 0.005*x202 =E= 0; e102.. 0.005*(sqrt(1 + sqr(x102)) + sqrt(1 + sqr(x103)) + sqrt(1 + sqr(x103)) + sqrt(1 + sqr(x104)) + sqrt(1 + sqr(x104)) + sqrt(1 + sqr(x105)) + sqrt(1 + sqr(x105)) + sqrt(1 + sqr(x106)) + sqrt(1 + sqr(x106)) + sqrt(1 + sqr(x107)) + sqrt(1 + sqr(x107)) + sqrt(1 + sqr(x108)) + sqrt(1 + sqr(x108)) + sqrt(1 + sqr(x109)) + sqrt(1 + sqr(x109)) + sqrt(1 + sqr( x110)) + sqrt(1 + sqr(x110)) + sqrt(1 + sqr(x111)) + sqrt(1 + sqr(x111)) + sqrt(1 + sqr(x112)) + sqrt(1 + sqr(x112)) + sqrt(1 + sqr(x113)) + sqrt(1 + sqr(x113)) + sqrt(1 + sqr(x114)) + sqrt(1 + sqr(x114)) + sqrt(1 + sqr(x115)) + sqrt(1 + sqr(x115)) + sqrt(1 + sqr(x116)) + sqrt(1 + sqr(x116)) + sqrt(1 + sqr(x117)) + sqrt(1 + sqr(x117)) + sqrt(1 + sqr( x118)) + sqrt(1 + sqr(x118)) + sqrt(1 + sqr(x119)) + sqrt(1 + sqr(x119)) + sqrt(1 + sqr(x120)) + sqrt(1 + sqr(x120)) + sqrt(1 + sqr(x121)) + sqrt(1 + sqr(x121)) + sqrt(1 + sqr(x122)) + sqrt(1 + sqr(x122)) + sqrt(1 + sqr(x123)) + sqrt(1 + sqr(x123)) + sqrt(1 + sqr(x124)) + sqrt(1 + sqr(x124)) + sqrt(1 + sqr(x125)) + sqrt(1 + sqr(x125)) + sqrt(1 + sqr( x126)) + sqrt(1 + sqr(x126)) + sqrt(1 + sqr(x127)) + sqrt(1 + sqr(x127)) + sqrt(1 + sqr(x128)) + sqrt(1 + sqr(x128)) + sqrt(1 + sqr(x129)) + sqrt(1 + sqr(x129)) + sqrt(1 + sqr(x130)) + sqrt(1 + sqr(x130)) + sqrt(1 + sqr(x131)) + sqrt(1 + sqr(x131)) + sqrt(1 + sqr(x132)) + sqrt(1 + sqr(x132)) + sqrt(1 + sqr(x133)) + sqrt(1 + sqr(x133)) + sqrt(1 + sqr( x134)) + sqrt(1 + sqr(x134)) + sqrt(1 + sqr(x135)) + sqrt(1 + sqr(x135)) + sqrt(1 + sqr(x136)) + sqrt(1 + sqr(x136)) + sqrt(1 + sqr(x137)) + sqrt(1 + sqr(x137)) + sqrt(1 + sqr(x138)) + sqrt(1 + sqr(x138)) + sqrt(1 + sqr(x139)) + sqrt(1 + sqr(x139)) + sqrt(1 + sqr(x140)) + sqrt(1 + sqr(x140)) + sqrt(1 + sqr(x141)) + sqrt(1 + sqr(x141)) + sqrt(1 + sqr( x142)) + sqrt(1 + sqr(x142)) + sqrt(1 + sqr(x143)) + sqrt(1 + sqr(x143)) + sqrt(1 + sqr(x144)) + sqrt(1 + sqr(x144)) + sqrt(1 + sqr(x145)) + sqrt(1 + sqr(x145)) + sqrt(1 + sqr(x146)) + sqrt(1 + sqr(x146)) + sqrt(1 + sqr(x147)) + sqrt(1 + sqr(x147)) + sqrt(1 + sqr(x148)) + sqrt(1 + sqr(x148)) + sqrt(1 + sqr(x149)) + sqrt(1 + sqr(x149)) + sqrt(1 + sqr( x150)) + sqrt(1 + sqr(x150)) + sqrt(1 + sqr(x151)) + sqrt(1 + sqr(x151)) + sqrt(1 + sqr(x152)) + sqrt(1 + sqr(x152)) + sqrt(1 + sqr(x153)) + sqrt(1 + sqr(x153)) + sqrt(1 + sqr(x154)) + sqrt(1 + sqr(x154)) + sqrt(1 + sqr(x155)) + sqrt(1 + sqr(x155)) + sqrt(1 + sqr(x156)) + sqrt(1 + sqr(x156)) + sqrt(1 + sqr(x157)) + sqrt(1 + sqr(x157)) + sqrt(1 + sqr( x158)) + sqrt(1 + sqr(x158)) + sqrt(1 + sqr(x159)) + sqrt(1 + sqr(x159)) + sqrt(1 + sqr(x160)) + sqrt(1 + sqr(x160)) + sqrt(1 + sqr(x161)) + sqrt(1 + sqr(x161)) + sqrt(1 + sqr(x162)) + sqrt(1 + sqr(x162)) + sqrt(1 + sqr(x163)) + sqrt(1 + sqr(x163)) + sqrt(1 + sqr(x164)) + sqrt(1 + sqr(x164)) + sqrt(1 + sqr(x165)) + sqrt(1 + sqr(x165)) + sqrt(1 + sqr( x166)) + sqrt(1 + sqr(x166)) + sqrt(1 + sqr(x167)) + sqrt(1 + sqr(x167)) + sqrt(1 + sqr(x168)) + sqrt(1 + sqr(x168)) + sqrt(1 + sqr(x169)) + sqrt(1 + sqr(x169)) + sqrt(1 + sqr(x170)) + sqrt(1 + sqr(x170)) + sqrt(1 + sqr(x171)) + sqrt(1 + sqr(x171)) + sqrt(1 + sqr(x172)) + sqrt(1 + sqr(x172)) + sqrt(1 + sqr(x173)) + sqrt(1 + sqr(x173)) + sqrt(1 + sqr( x174)) + sqrt(1 + sqr(x174)) + sqrt(1 + sqr(x175)) + sqrt(1 + sqr(x175)) + sqrt(1 + sqr(x176)) + sqrt(1 + sqr(x176)) + sqrt(1 + sqr(x177)) + sqrt(1 + sqr(x177)) + sqrt(1 + sqr(x178)) + sqrt(1 + sqr(x178)) + sqrt(1 + sqr(x179)) + sqrt(1 + sqr(x179)) + sqrt(1 + sqr(x180)) + sqrt(1 + sqr(x180)) + sqrt(1 + sqr(x181)) + sqrt(1 + sqr(x181)) + sqrt(1 + sqr( x182)) + sqrt(1 + sqr(x182)) + sqrt(1 + sqr(x183)) + sqrt(1 + sqr(x183)) + sqrt(1 + sqr(x184)) + sqrt(1 + sqr(x184)) + sqrt(1 + sqr(x185)) + sqrt(1 + sqr(x185)) + sqrt(1 + sqr(x186)) + sqrt(1 + sqr(x186)) + sqrt(1 + sqr(x187)) + sqrt(1 + sqr(x187)) + sqrt(1 + sqr(x188)) + sqrt(1 + sqr(x188)) + sqrt(1 + sqr(x189)) + sqrt(1 + sqr(x189)) + sqrt(1 + sqr( x190)) + sqrt(1 + sqr(x190)) + sqrt(1 + sqr(x191)) + sqrt(1 + sqr(x191)) + sqrt(1 + sqr(x192)) + sqrt(1 + sqr(x192)) + sqrt(1 + sqr(x193)) + sqrt(1 + sqr(x193)) + sqrt(1 + sqr(x194)) + sqrt(1 + sqr(x194)) + sqrt(1 + sqr(x195)) + sqrt(1 + sqr(x195)) + sqrt(1 + sqr(x196)) + sqrt(1 + sqr(x196)) + sqrt(1 + sqr(x197)) + sqrt(1 + sqr(x197)) + sqrt(1 + sqr( x198)) + sqrt(1 + sqr(x198)) + sqrt(1 + sqr(x199)) + sqrt(1 + sqr(x199)) + sqrt(1 + sqr(x200)) + sqrt(1 + sqr(x200)) + sqrt(1 + sqr(x201)) + sqrt(1 + sqr(x201)) + sqrt(1 + sqr(x202))) =E= 4; * set non-default bounds x1.fx = 1; x101.fx = 3; * set non-default levels x2.l = 0.9804; x3.l = 0.9616; x4.l = 0.9436; x5.l = 0.9264; x6.l = 0.91; x7.l = 0.8944; x8.l = 0.8796; x9.l = 0.8656; x10.l = 0.8524; x11.l = 0.84; x12.l = 0.8284; x13.l = 0.8176; x14.l = 0.8076; x15.l = 0.7984; x16.l = 0.79; x17.l = 0.7824; x18.l = 0.7756; x19.l = 0.7696; x20.l = 0.7644; x21.l = 0.76; x22.l = 0.7564; x23.l = 0.7536; x24.l = 0.7516; x25.l = 0.7504; x26.l = 0.75; x27.l = 0.7504; x28.l = 0.7516; x29.l = 0.7536; x30.l = 0.7564; x31.l = 0.76; x32.l = 0.7644; x33.l = 0.7696; x34.l = 0.7756; x35.l = 0.7824; x36.l = 0.79; x37.l = 0.7984; x38.l = 0.8076; x39.l = 0.8176; x40.l = 0.8284; x41.l = 0.84; x42.l = 0.8524; x43.l = 0.8656; x44.l = 0.8796; x45.l = 0.8944; x46.l = 0.91; x47.l = 0.9264; x48.l = 0.9436; x49.l = 0.9616; x50.l = 0.9804; x51.l = 1; x52.l = 1.0204; x53.l = 1.0416; x54.l = 1.0636; x55.l = 1.0864; x56.l = 1.11; x57.l = 1.1344; x58.l = 1.1596; x59.l = 1.1856; x60.l = 1.2124; x61.l = 1.24; x62.l = 1.2684; x63.l = 1.2976; x64.l = 1.3276; x65.l = 1.3584; x66.l = 1.39; x67.l = 1.4224; x68.l = 1.4556; x69.l = 1.4896; x70.l = 1.5244; x71.l = 1.56; x72.l = 1.5964; x73.l = 1.6336; x74.l = 1.6716; x75.l = 1.7104; x76.l = 1.75; x77.l = 1.7904; x78.l = 1.8316; x79.l = 1.8736; x80.l = 1.9164; x81.l = 1.96; x82.l = 2.0044; x83.l = 2.0496; x84.l = 2.0956; x85.l = 2.1424; x86.l = 2.19; x87.l = 2.2384; x88.l = 2.2876; x89.l = 2.3376; x90.l = 2.3884; x91.l = 2.44; x92.l = 2.4924; x93.l = 2.5456; x94.l = 2.5996; x95.l = 2.6544; x96.l = 2.71; x97.l = 2.7664; x98.l = 2.8236; x99.l = 2.8816; x100.l = 2.9404; x102.l = -2; x103.l = -1.92; x104.l = -1.84; x105.l = -1.76; x106.l = -1.68; x107.l = -1.6; x108.l = -1.52; x109.l = -1.44; x110.l = -1.36; x111.l = -1.28; x112.l = -1.2; x113.l = -1.12; x114.l = -1.04; x115.l = -0.96; x116.l = -0.88; x117.l = -0.8; x118.l = -0.72; x119.l = -0.64; x120.l = -0.56; x121.l = -0.48; x122.l = -0.4; x123.l = -0.32; x124.l = -0.24; x125.l = -0.16; x126.l = -0.0800000000000001; x128.l = 0.0800000000000001; x129.l = 0.16; x130.l = 0.24; x131.l = 0.32; x132.l = 0.4; x133.l = 0.48; x134.l = 0.56; x135.l = 0.64; x136.l = 0.72; x137.l = 0.8; x138.l = 0.88; x139.l = 0.96; x140.l = 1.04; x141.l = 1.12; x142.l = 1.2; x143.l = 1.28; x144.l = 1.36; x145.l = 1.44; x146.l = 1.52; x147.l = 1.6; x148.l = 1.68; x149.l = 1.76; x150.l = 1.84; x151.l = 1.92; x152.l = 2; x153.l = 2.08; x154.l = 2.16; x155.l = 2.24; x156.l = 2.32; x157.l = 2.4; x158.l = 2.48; x159.l = 2.56; x160.l = 2.64; x161.l = 2.72; x162.l = 2.8; x163.l = 2.88; x164.l = 2.96; x165.l = 3.04; x166.l = 3.12; x167.l = 3.2; x168.l = 3.28; x169.l = 3.36; x170.l = 3.44; x171.l = 3.52; x172.l = 3.6; x173.l = 3.68; x174.l = 3.76; x175.l = 3.84; x176.l = 3.92; x177.l = 4; x178.l = 4.08; x179.l = 4.16; x180.l = 4.24; x181.l = 4.32; x182.l = 4.4; x183.l = 4.48; x184.l = 4.56; x185.l = 4.64; x186.l = 4.72; x187.l = 4.8; x188.l = 4.88; x189.l = 4.96; x190.l = 5.04; x191.l = 5.12; x192.l = 5.2; x193.l = 5.28; x194.l = 5.36; x195.l = 5.44; x196.l = 5.52; x197.l = 5.6; x198.l = 5.68; x199.l = 5.76; x200.l = 5.84; x201.l = 5.92; x202.l = 6; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91