MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance chakra
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -179.13357260 (ANTIGONE) -179.13355800 (BARON) -179.13355790 (COUENNE) -179.13355790 (LINDO) -179.13355790 (SCIP) |
Referencesⓘ | Kendrick, D and Taylor, L, Numerical methods and Nonlinear Optimizing models for Economic Planning. In Chenery, Hollis B, Ed, Studies in Development Planning, Harvard University Press, 1971. |
Sourceⓘ | GAMS Model Library model chakra |
Applicationⓘ | Financial Optimization |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 62 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 41 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | signomial |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 20 |
#Nonlinear Nonzeros in Objectiveⓘ | 20 |
#Constraintsⓘ | 41 |
#Linear Constraintsⓘ | 20 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 21 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 122 |
#Nonlinear Nonzeros in Jacobianⓘ | 21 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 41 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 41 |
#Blocks in Hessian of Lagrangianⓘ | 41 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-01 |
Maximal coefficientⓘ | 1.0000e+01 |
Infeasibility of initial pointⓘ | 1.137e-13 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 42 42 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 63 63 0 0 0 0 0 0 * FX 2 * * Nonzero counts * Total const NL DLL * 143 102 41 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,objvar; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42; e1.. x1 - x21 - 0.95*x42 + x43 =E= 0; e2.. x2 - x22 - 0.95*x43 + x44 =E= 0; e3.. x3 - x23 - 0.95*x44 + x45 =E= 0; e4.. x4 - x24 - 0.95*x45 + x46 =E= 0; e5.. x5 - x25 - 0.95*x46 + x47 =E= 0; e6.. x6 - x26 - 0.95*x47 + x48 =E= 0; e7.. x7 - x27 - 0.95*x48 + x49 =E= 0; e8.. x8 - x28 - 0.95*x49 + x50 =E= 0; e9.. x9 - x29 - 0.95*x50 + x51 =E= 0; e10.. x10 - x30 - 0.95*x51 + x52 =E= 0; e11.. x11 - x31 - 0.95*x52 + x53 =E= 0; e12.. x12 - x32 - 0.95*x53 + x54 =E= 0; e13.. x13 - x33 - 0.95*x54 + x55 =E= 0; e14.. x14 - x34 - 0.95*x55 + x56 =E= 0; e15.. x15 - x35 - 0.95*x56 + x57 =E= 0; e16.. x16 - x36 - 0.95*x57 + x58 =E= 0; e17.. x17 - x37 - 0.95*x58 + x59 =E= 0; e18.. x18 - x38 - 0.95*x59 + x60 =E= 0; e19.. x19 - x39 - 0.95*x60 + x61 =E= 0; e20.. x20 - x40 - 0.95*x61 + x62 =E= 0; e21.. -0.560877056310648*x42**0.75 + x21 =E= 0; e22.. -0.569991308475696*x43**0.75 + x22 =E= 0; e23.. -0.579253667238426*x44**0.75 + x23 =E= 0; e24.. -0.58866653933105*x45**0.75 + x24 =E= 0; e25.. -0.59823237059518*x46**0.75 + x25 =E= 0; e26.. -0.607953646617352*x47**0.75 + x26 =E= 0; e27.. -0.617832893374884*x48**0.75 + x27 =E= 0; e28.. -0.627872677892226*x49**0.75 + x28 =E= 0; e29.. -0.638075608907974*x50**0.75 + x29 =E= 0; e30.. -0.648444337552729*x51**0.75 + x30 =E= 0; e31.. -0.658981558037961*x52**0.75 + x31 =E= 0; e32.. -0.669690008356078*x53**0.75 + x32 =E= 0; e33.. -0.680572470991864*x54**0.75 + x33 =E= 0; e34.. -0.691631773645482*x55**0.75 + x34 =E= 0; e35.. -0.702870789967221*x56**0.75 + x35 =E= 0; e36.. -0.714292440304189*x57**0.75 + x36 =E= 0; e37.. -0.725899692459132*x58**0.75 + x37 =E= 0; e38.. -0.737695562461593*x59**0.75 + x38 =E= 0; e39.. -0.749683115351594*x60**0.75 + x39 =E= 0; e40.. -0.761865465976057*x61**0.75 + x40 =E= 0; e41.. -0.774245779798168*x62**0.75 + x41 =E= 0; e42.. -(10*x1**0.1 + 9.70873786407767*x2**0.1 + 9.42595909133755*x3**0.1 + 9.1514165935316*x4**0.1 + 8.88487047915689*x5**0.1 + 8.62608784384164*x6 **0.1 + 8.37484256683654*x7**0.1 + 8.13091511343354*x8**0.1 + 7.89409234313936*x9**0.1 + 7.66416732343627*x10**0.1 + 7.44093914896725* x11**0.1 + 7.22421276598762*x12**0.1 + 7.01379880192973*x13**0.1 + 6.80951339993178*x14**0.1 + 6.61117805818619*x15**0.1 + 6.41861947396717* x16**0.1 + 6.23166939220114*x17**0.1 + 6.05016445844771*x18**0.1 + 5.87394607616282*x19**0.1 + 5.70286026811925*x20**0.1) - objvar =E= 0; * set non-default bounds x1.lo = 1; x2.lo = 1; x3.lo = 1; x4.lo = 1; x5.lo = 1; x6.lo = 1; x7.lo = 1; x8.lo = 1; x9.lo = 1; x10.lo = 1; x11.lo = 1; x12.lo = 1; x13.lo = 1; x14.lo = 1; x15.lo = 1; x16.lo = 1; x17.lo = 1; x18.lo = 1; x19.lo = 1; x20.lo = 1; x21.fx = 4.275; x22.lo = 1; x23.lo = 1; x24.lo = 1; x25.lo = 1; x26.lo = 1; x27.lo = 1; x28.lo = 1; x29.lo = 1; x30.lo = 1; x31.lo = 1; x32.lo = 1; x33.lo = 1; x34.lo = 1; x35.lo = 1; x36.lo = 1; x37.lo = 1; x38.lo = 1; x39.lo = 1; x40.lo = 1; x41.fx = 13.7105041437099; x42.lo = 1; x43.lo = 1; x44.lo = 1; x45.lo = 1; x46.lo = 1; x47.lo = 1; x48.lo = 1; x49.lo = 1; x50.lo = 1; x51.lo = 1; x52.lo = 1; x53.lo = 1; x54.lo = 1; x55.lo = 1; x56.lo = 1; x57.lo = 1; x58.lo = 1; x59.lo = 1; x60.lo = 1; x61.lo = 1; x62.lo = 1; * set non-default levels x1.l = 2.65787165646338; x2.l = 2.82088780167558; x3.l = 2.99388978021114; x4.l = 3.17748858499683; x5.l = 3.37233255315755; x6.l = 3.57910964624529; x7.l = 3.79854986956959; x8.l = 4.03142783910829; x9.l = 4.27856550499249; x10.l = 4.54083504110911; x11.l = 4.81916191094403; x12.l = 5.11452812040594; x13.l = 5.42797566902516; x14.l = 5.76061021161472; x15.l = 6.11360494321835; x16.l = 6.48820472094886; x17.l = 6.88573043715017; x18.l = 7.30758365919495; x19.l = 7.75525155216026; x20.l = 8.23031210161431; x22.l = 4.5315; x23.l = 4.80339; x24.l = 5.0915934; x25.l = 5.397089004; x26.l = 5.72091434424; x27.l = 6.0641692048944; x28.l = 6.42801935718807; x29.l = 6.81370051861935; x30.l = 7.22252254973651; x31.l = 7.6558739027207; x32.l = 8.11522633688395; x33.l = 8.60213991709698; x34.l = 9.1182683121228; x35.l = 9.66536441085017; x36.l = 10.2452862755012; x37.l = 10.8600034520313; x38.l = 11.5116036591531; x39.l = 12.2022998787023; x40.l = 12.9344378714245; x42.l = 15; x43.l = 15.8671283435366; x44.l = 16.7843841246842; x45.l = 17.7546651382389; x46.l = 18.7810366963301; x47.l = 19.866741312356; x48.l = 21.0152089447329; x49.l = 22.2300678328211; x50.l = 23.5151559592598; x51.l = 24.8745331749237; x52.l = 26.3124940248049; x53.l = 27.8335813153413; x54.l = 29.4426004660523; x55.l = 31.1446346908215; x56.l = 32.9450610567885; x57.l = 34.8495674715809; x58.l = 36.8641706525542; x59.l = 38.9952351348075; x60.l = 41.2494933780253; x61.l = 43.6340670356661; x62.l = 46.156489453693; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91