MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance chenery

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
-1058.91985600 p1 ( gdx sol )
(infeas: 2e-12)
Other points (infeas > 1e-08)  
Dual Bounds
-1177.80785100 (ANTIGONE)
-1058.91986300 (BARON)
-1058.91987100 (COUENNE)
-1098.23486700 (LINDO)
-1058.91985900 (SCIP)
References Chenery, Hollis B and Raduchel, W J, Substitution and Structural Change. In Chenery, Hollis B, Ed, Structural Change and Development Policy, Oxford University Press, New York and Oxford, 1981.
Source GAMS Model Library model chenery
Application Production
Added to library 31 Jul 2001
Problem type NLP
#Variables 43
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 35
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 4
#Nonlinear Nonzeros in Objective 0
#Constraints 38
#Linear Constraints 15
#Quadratic Constraints 7
#Polynomial Constraints 0
#Signomial Constraints 8
#General Nonlinear Constraints 8
Operands in Gen. Nonlin. Functions div vcpower
Constraints curvature indefinite
#Nonzeros in Jacobian 128
#Nonlinear Nonzeros in Jacobian 56
#Nonzeros in (Upper-Left) Hessian of Lagrangian 54
#Nonzeros in Diagonal of Hessian of Lagrangian 10
#Blocks in Hessian of Lagrangian 13
Minimal blocksize in Hessian of Lagrangian 1
Maximal blocksize in Hessian of Lagrangian 13
Average blocksize in Hessian of Lagrangian 2.692308
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e-03
Maximal coefficient 4.5000e+02
Infeasibility of initial point 217
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         39       33        4        2        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         44       44        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        133       77       56        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,objvar,x41,x42,x43,x44;

Positive Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x17,x18,x19,x20,x21
          ,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39;


e1..  - x9 - x10 - x11 - x12 - objvar =E= 0;

e2..    x1 - x9 - x25 + x28 =G= 0;

e3..  - 0.1*x1 + x2 - x10 - x26 + x29 =G= 0;

e4..  - 0.2*x1 - 0.1*x2 + x3 - x11 - x27 + x30 =G= 0;

e5..  - 0.2*x1 - 0.3*x2 - 0.1*x3 + x4 - x12 =G= 0;

e6.. x31*x28 - x34*x25 + x32*x29 - x35*x26 + x33*x30 - x36*x27 =L= 0;

e7..  - 0.005*x28 + x31 =E= 1;

e8..  - 0.0157*x29 + x32 =E= 1;

e9..  - 0.00178*x30 + x33 =E= 1;

e10..    0.005*x25 + x34 =E= 1;

e11..    0.001*x26 + x35 =E= 1.1;

e12..    0.01*x27 + x36 =E= 1;

e13.. -100*(x39*x13)**(-0.674) + x9 =E= 0;

e14.. -230*(x39*x14)**(-0.246) + x10 =E= 0;

e15.. -220*(x39*x15)**(-0.587) + x11 =E= 0;

e16.. -450*(x39*x16)**(-0.352) + x12 =E= 0;

e17.. x17*x1 + x18*x2 + x19*x3 + x20*x4 =L= 750;

e18.. x21*x1 + x22*x2 + x23*x3 + x24*x4 =E= 500;

e19..  - x5 + x13 - 0.1*x14 - 0.2*x15 - 0.2*x16 =E= 0;

e20..  - x6 + x14 - 0.1*x15 - 0.3*x16 =E= 0;

e21..  - x7 + x15 - 0.1*x16 =E= 0;

e22..  - x8 + x16 =E= 0;

e23..  - x37 + x38 =E= 0;

e24.. -(2.06748466257669*x38)**(-0.89) + x41 =E= 0;

e25.. -(1.25733634311512*x38)**(-0.71) + x42 =E= 0;

e26.. -(0.00908173562058528*x38)**(-0.8) + x43 =E= 0;

e27.. -(124.31328320802*x38)**(-0.95) + x44 =E= 0;

e28.. -(0.674 + 0.326/x41)**0.123595505617978 + 3.97*x17 =E= 0;

e29.. -(0.557 + 0.443/x42)**0.408450704225352 + 3.33*x18 =E= 0;

e30.. -(0.00900000000000001 + 0.991/x43)**0.25 + 1.67*x19 =E= 0;

e31.. -(0.99202 + 0.00798/x44)**0.0526315789473684 + 1.84*x20 =E= 0;

e32.. -(0.326 + 0.674*x41)**0.123595505617978 + 3.97*x21 =E= 0;

e33.. -(0.443 + 0.557*x42)**0.408450704225352 + 3.33*x22 =E= 0;

e34.. -(0.991 + 0.00900000000000001*x43)**0.25 + 1.67*x23 =E= 0;

e35.. -(0.00798 + 0.99202*x44)**0.0526315789473684 + 1.84*x24 =E= 0;

e36.. -x37*x21 + x5 - x17 =E= 0;

e37.. -x37*x22 + x6 - x18 =E= 0;

e38.. -x37*x23 + x7 - x19 =E= 0;

e39.. -x37*x24 + x8 - x20 =E= 0;

* set non-default bounds
x1.up = 2000;
x2.up = 2000;
x3.up = 2000;
x4.up = 2000;
x5.up = 100;
x6.up = 100;
x7.up = 100;
x8.up = 100;
x9.up = 2000;
x10.up = 2000;
x11.up = 2000;
x12.up = 2000;
x13.lo = 0.1; x13.up = 100;
x14.lo = 0.1; x14.up = 100;
x15.lo = 0.1; x15.up = 100;
x16.lo = 0.1; x16.up = 100;
x17.up = 1;
x18.up = 1;
x19.up = 1;
x20.up = 1;
x21.up = 1;
x22.up = 1;
x23.up = 1;
x24.up = 1;
x25.up = 400;
x26.up = 400;
x27.up = 400;
x28.up = 400;
x29.up = 400;
x30.up = 400;
x31.up = 4;
x32.up = 4;
x33.up = 4;
x34.up = 4;
x35.up = 4;
x36.up = 4;
x37.lo = 0.25; x37.up = 4;
x38.lo = 0.25; x38.up = 4;
x39.lo = 0.01;
x41.lo = 0.001;
x42.lo = 0.001;
x43.lo = 0.001;
x44.lo = 0.001;

* set non-default levels
x1.l = 200;
x2.l = 200;
x3.l = 200;
x4.l = 200;
x5.l = 1.08002386572984;
x6.l = 1.25850763714561;
x7.l = 2.47224270643972;
x8.l = 2.08174548233022;
x9.l = 250;
x10.l = 250;
x11.l = 250;
x12.l = 250;
x13.l = 3;
x14.l = 3;
x15.l = 3;
x16.l = 3;
x17.l = 0.283078383128534;
x18.l = 0.383990781960791;
x19.l = 0.309951359679435;
x20.l = 0.580992426342466;
x21.l = 0.22769870931466;
x22.l = 0.249861958624235;
x23.l = 0.617797527645794;
x24.l = 0.428786587425074;
x31.l = 1;
x32.l = 1;
x33.l = 1;
x34.l = 1;
x35.l = 1.1;
x36.l = 1;
x37.l = 3.5;
x38.l = 3.5;
x39.l = 0.3;
x41.l = 0.171804999139287;
x42.l = 0.349221638418406;
x43.l = 15.7837604335036;
x44.l = 0.00311417990544524;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0