MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance clay0303m
Non overlapping rectangular units must be placed within the confines of certain designated areas such that the cost of connecting these units is minimized.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 26669.10500000 (ALPHAECP) 26669.10900000 (ANTIGONE) 26669.10954000 (BARON) 26669.10900000 (BONMIN) 26669.10079000 (COUENNE) 26669.10881000 (CPLEX) 26669.10367000 (GUROBI) 26669.10953000 (LINDO) 26669.10957000 (SCIP) 26669.10892000 (SHOT) |
Referencesⓘ | Sawaya, Nicolas W, Reformulations, relaxations and cutting planes for generalized disjunctive programming, PhD thesis, Carnegie Mellon University, 2006. |
Sourceⓘ | CLay0303M.gms from CMU-IBM MINLP solver project page |
Applicationⓘ | Layout |
Added to libraryⓘ | 28 Sep 2013 |
Problem typeⓘ | MBQCP |
#Variablesⓘ | 33 |
#Binary Variablesⓘ | 21 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 6 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 6 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 66 |
#Linear Constraintsⓘ | 30 |
#Quadratic Constraintsⓘ | 36 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 201 |
#Nonlinear Nonzeros in Jacobianⓘ | 72 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 6 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
#Blocks in Hessian of Lagrangianⓘ | 6 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 7.4320e+03 |
Infeasibility of initial pointⓘ | 2 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 67 7 12 48 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 34 13 21 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 208 136 72 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,b26,b27,x28,x29,x30,x31,x32,x33,objvar; Positive Variables x28,x29,x30,x31,x32,x33; Binary Variables b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19,b20,b21,b22 ,b23,b24,b25,b26,b27; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67; e1.. - 300*x28 - 240*x29 - 100*x30 - 300*x31 - 240*x32 - 100*x33 + objvar =E= 0; e2.. - x1 + x2 + x28 =G= 0; e3.. - x1 + x3 + x29 =G= 0; e4.. - x2 + x3 + x30 =G= 0; e5.. x1 - x2 + x28 =G= 0; e6.. x1 - x3 + x29 =G= 0; e7.. x2 - x3 + x30 =G= 0; e8.. - x4 + x5 + x31 =G= 0; e9.. - x4 + x6 + x32 =G= 0; e10.. - x5 + x6 + x33 =G= 0; e11.. x4 - x5 + x31 =G= 0; e12.. x4 - x6 + x32 =G= 0; e13.. x5 - x6 + x33 =G= 0; e14.. x1 - x2 + 46*b7 =L= 40; e15.. x1 - x3 + 46*b8 =L= 42; e16.. x2 - x3 + 46*b9 =L= 41; e17.. - x1 + x2 + 46*b10 =L= 40; e18.. - x1 + x3 + 46*b11 =L= 42; e19.. - x2 + x3 + 46*b12 =L= 41; e20.. x4 - x5 + 81*b13 =L= 75.5; e21.. x4 - x6 + 81*b14 =L= 76.5; e22.. x5 - x6 + 81*b15 =L= 77; e23.. - x4 + x5 + 81*b16 =L= 75.5; e24.. - x4 + x6 + 81*b17 =L= 76.5; e25.. - x5 + x6 + 81*b18 =L= 77; e26.. b7 + b10 + b13 + b16 =E= 1; e27.. b8 + b11 + b14 + b17 =E= 1; e28.. b9 + b12 + b15 + b18 =E= 1; e29.. sqr((-17.5) + x1) + sqr((-7) + x4) + 6814*b19 =L= 6850; e30.. sqr((-18.5) + x2) + sqr((-7.5) + x5) + 6678*b20 =L= 6714; e31.. sqr((-16.5) + x3) + sqr((-8.5) + x6) + 6958*b21 =L= 6994; e32.. sqr((-52.5) + x1) + sqr((-77) + x4) + 6556*b22 =L= 6581; e33.. sqr((-53.5) + x2) + sqr((-77.5) + x5) + 6697*b23 =L= 6722; e34.. sqr((-51.5) + x3) + sqr((-78.5) + x6) + 6985*b24 =L= 7010; e35.. sqr((-32.5) + x1) + sqr((-47) + x4) + 2025*b25 =L= 2041; e36.. sqr((-33.5) + x2) + sqr((-47.5) + x5) + 2106*b26 =L= 2122; e37.. sqr((-31.5) + x3) + sqr((-48.5) + x6) + 2317*b27 =L= 2333; e38.. sqr((-17.5) + x1) + sqr((-13) + x4) + 5950*b19 =L= 5986; e39.. sqr((-18.5) + x2) + sqr((-12.5) + x5) + 5953*b20 =L= 5989; e40.. sqr((-16.5) + x3) + sqr((-11.5) + x6) + 6517*b21 =L= 6553; e41.. sqr((-52.5) + x1) + sqr((-83) + x4) + 7432*b22 =L= 7457; e42.. sqr((-53.5) + x2) + sqr((-82.5) + x5) + 7432*b23 =L= 7457; e43.. sqr((-51.5) + x3) + sqr((-81.5) + x6) + 7432*b24 =L= 7457; e44.. sqr((-32.5) + x1) + sqr((-53) + x4) + 2541*b25 =L= 2557; e45.. sqr((-33.5) + x2) + sqr((-52.5) + x5) + 2541*b26 =L= 2557; e46.. sqr((-31.5) + x3) + sqr((-51.5) + x6) + 2584*b27 =L= 2600; e47.. sqr((-12.5) + x1) + sqr((-7) + x4) + 7189*b19 =L= 7225; e48.. sqr((-11.5) + x2) + sqr((-7.5) + x5) + 7189*b20 =L= 7225; e49.. sqr((-13.5) + x3) + sqr((-8.5) + x6) + 7189*b21 =L= 7225; e50.. sqr((-47.5) + x1) + sqr((-77) + x4) + 6171*b22 =L= 6196; e51.. sqr((-46.5) + x2) + sqr((-77.5) + x5) + 6172*b23 =L= 6197; e52.. sqr((-48.5) + x3) + sqr((-78.5) + x6) + 6748*b24 =L= 6773; e53.. sqr((-27.5) + x1) + sqr((-47) + x4) + 2209*b25 =L= 2225; e54.. sqr((-26.5) + x2) + sqr((-47.5) + x5) + 2290*b26 =L= 2306; e55.. sqr((-28.5) + x3) + sqr((-48.5) + x6) + 2458*b27 =L= 2474; e56.. sqr((-12.5) + x1) + sqr((-13) + x4) + 6325*b19 =L= 6361; e57.. sqr((-11.5) + x2) + sqr((-12.5) + x5) + 6464*b20 =L= 6500; e58.. sqr((-13.5) + x3) + sqr((-11.5) + x6) + 6748*b21 =L= 6784; e59.. sqr((-47.5) + x1) + sqr((-83) + x4) + 7047*b22 =L= 7072; e60.. sqr((-46.5) + x2) + sqr((-82.5) + x5) + 6907*b23 =L= 6932; e61.. sqr((-48.5) + x3) + sqr((-81.5) + x6) + 7195*b24 =L= 7220; e62.. sqr((-27.5) + x1) + sqr((-53) + x4) + 2725*b25 =L= 2741; e63.. sqr((-26.5) + x2) + sqr((-52.5) + x5) + 2725*b26 =L= 2741; e64.. sqr((-28.5) + x3) + sqr((-51.5) + x6) + 2725*b27 =L= 2741; e65.. b19 + b22 + b25 =E= 1; e66.. b20 + b23 + b26 =E= 1; e67.. b21 + b24 + b27 =E= 1; * set non-default bounds x1.lo = 11.5; x1.up = 52.5; x2.lo = 12.5; x2.up = 51.5; x3.lo = 10.5; x3.up = 53.5; x4.lo = 7; x4.up = 82; x5.lo = 6.5; x5.up = 82.5; x6.lo = 5.5; x6.up = 83.5; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91