MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance clay0304m
Non overlapping rectangular units must be placed within the confines of certain designated areas such that the cost of connecting these units is minimized.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 40262.36800000 (ALPHAECP) 40262.38724000 (ANTIGONE) 40262.38749000 (BARON) 40262.38700000 (BONMIN) 40262.38724000 (COUENNE) 40262.38709000 (CPLEX) 40262.38751000 (GUROBI) 40262.38639000 (LINDO) 40262.38753000 (SCIP) 40262.38746000 (SHOT) |
Referencesⓘ | Sawaya, Nicolas W, Reformulations, relaxations and cutting planes for generalized disjunctive programming, PhD thesis, Carnegie Mellon University, 2006. |
Sourceⓘ | CLay0304M.gms from CMU-IBM MINLP solver project page |
Applicationⓘ | Layout |
Added to libraryⓘ | 28 Sep 2013 |
Problem typeⓘ | MBQCP |
#Variablesⓘ | 56 |
#Binary Variablesⓘ | 36 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 8 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 12 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 106 |
#Linear Constraintsⓘ | 58 |
#Quadratic Constraintsⓘ | 48 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 324 |
#Nonlinear Nonzeros in Jacobianⓘ | 96 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 8 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 8 |
#Blocks in Hessian of Lagrangianⓘ | 8 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 7.4320e+03 |
Infeasibility of initial pointⓘ | 2.5 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 107 11 24 72 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 57 21 36 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 337 241 96 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36 ,b37,b38,b39,b40,b41,b42,b43,b44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,objvar; Positive Variables x45,x46,x47,x48,x49,x50,x51,x52,x53,x54,x55,x56; Binary Variables b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19,b20,b21,b22,b23 ,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36,b37,b38,b39,b40 ,b41,b42,b43,b44; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107; e1.. - 300*x45 - 240*x46 - 210*x47 - 100*x48 - 150*x49 - 120*x50 - 300*x51 - 240*x52 - 210*x53 - 100*x54 - 150*x55 - 120*x56 + objvar =E= 0; e2.. - x1 + x2 + x45 =G= 0; e3.. - x1 + x3 + x46 =G= 0; e4.. - x1 + x4 + x47 =G= 0; e5.. - x2 + x3 + x48 =G= 0; e6.. - x2 + x4 + x49 =G= 0; e7.. - x3 + x4 + x50 =G= 0; e8.. x1 - x2 + x45 =G= 0; e9.. x1 - x3 + x46 =G= 0; e10.. x1 - x4 + x47 =G= 0; e11.. x2 - x3 + x48 =G= 0; e12.. x2 - x4 + x49 =G= 0; e13.. x3 - x4 + x50 =G= 0; e14.. - x5 + x6 + x51 =G= 0; e15.. - x5 + x7 + x52 =G= 0; e16.. - x5 + x8 + x53 =G= 0; e17.. - x6 + x7 + x54 =G= 0; e18.. - x6 + x8 + x55 =G= 0; e19.. - x7 + x8 + x56 =G= 0; e20.. x5 - x6 + x51 =G= 0; e21.. x5 - x7 + x52 =G= 0; e22.. x5 - x8 + x53 =G= 0; e23.. x6 - x7 + x54 =G= 0; e24.. x6 - x8 + x55 =G= 0; e25.. x7 - x8 + x56 =G= 0; e26.. x1 - x2 + 46*b9 =L= 40; e27.. x1 - x3 + 46*b10 =L= 42; e28.. x1 - x4 + 46*b11 =L= 42.5; e29.. x2 - x3 + 46*b12 =L= 41; e30.. x2 - x4 + 46*b13 =L= 41.5; e31.. x3 - x4 + 46*b14 =L= 43.5; e32.. - x1 + x2 + 46*b15 =L= 40; e33.. - x1 + x3 + 46*b16 =L= 42; e34.. - x1 + x4 + 46*b17 =L= 42.5; e35.. - x2 + x3 + 46*b18 =L= 41; e36.. - x2 + x4 + 46*b19 =L= 41.5; e37.. - x3 + x4 + 46*b20 =L= 43.5; e38.. x5 - x6 + 81*b21 =L= 75.5; e39.. x5 - x7 + 81*b22 =L= 76.5; e40.. x5 - x8 + 81*b23 =L= 76.5; e41.. x6 - x7 + 81*b24 =L= 77; e42.. x6 - x8 + 81*b25 =L= 77; e43.. x7 - x8 + 81*b26 =L= 78; e44.. - x5 + x6 + 81*b27 =L= 75.5; e45.. - x5 + x7 + 81*b28 =L= 76.5; e46.. - x5 + x8 + 81*b29 =L= 76.5; e47.. - x6 + x7 + 81*b30 =L= 77; e48.. - x6 + x8 + 81*b31 =L= 77; e49.. - x7 + x8 + 81*b32 =L= 78; e50.. b9 + b15 + b21 + b27 =E= 1; e51.. b10 + b16 + b22 + b28 =E= 1; e52.. b11 + b17 + b23 + b29 =E= 1; e53.. b12 + b18 + b24 + b30 =E= 1; e54.. b13 + b19 + b25 + b31 =E= 1; e55.. b14 + b20 + b26 + b32 =E= 1; e56.. sqr((-17.5) + x1) + sqr((-7) + x5) + 6814*b33 =L= 6850; e57.. sqr((-18.5) + x2) + sqr((-7.5) + x6) + 6678*b34 =L= 6714; e58.. sqr((-16.5) + x3) + sqr((-8.5) + x7) + 6958*b35 =L= 6994; e59.. sqr((-16) + x4) + sqr((-8.5) + x8) + 7033*b36 =L= 7069; e60.. sqr((-52.5) + x1) + sqr((-77) + x5) + 6556*b37 =L= 6581; e61.. sqr((-53.5) + x2) + sqr((-77.5) + x6) + 6697*b38 =L= 6722; e62.. sqr((-51.5) + x3) + sqr((-78.5) + x7) + 6985*b39 =L= 7010; e63.. sqr((-51) + x4) + sqr((-78.5) + x8) + 6985*b40 =L= 7010; e64.. sqr((-32.5) + x1) + sqr((-47) + x5) + 2025*b41 =L= 2041; e65.. sqr((-33.5) + x2) + sqr((-47.5) + x6) + 2106*b42 =L= 2122; e66.. sqr((-31.5) + x3) + sqr((-48.5) + x7) + 2317*b43 =L= 2333; e67.. sqr((-31) + x4) + sqr((-48.5) + x8) + 2362*b44 =L= 2378; e68.. sqr((-17.5) + x1) + sqr((-13) + x5) + 5950*b33 =L= 5986; e69.. sqr((-18.5) + x2) + sqr((-12.5) + x6) + 5953*b34 =L= 5989; e70.. sqr((-16.5) + x3) + sqr((-11.5) + x7) + 6517*b35 =L= 6553; e71.. sqr((-16) + x4) + sqr((-11.5) + x8) + 6592*b36 =L= 6628; e72.. sqr((-52.5) + x1) + sqr((-83) + x5) + 7432*b37 =L= 7457; e73.. sqr((-53.5) + x2) + sqr((-82.5) + x6) + 7432*b38 =L= 7457; e74.. sqr((-51.5) + x3) + sqr((-81.5) + x7) + 7432*b39 =L= 7457; e75.. sqr((-51) + x4) + sqr((-81.5) + x8) + 7432*b40 =L= 7457; e76.. sqr((-32.5) + x1) + sqr((-53) + x5) + 2541*b41 =L= 2557; e77.. sqr((-33.5) + x2) + sqr((-52.5) + x6) + 2541*b42 =L= 2557; e78.. sqr((-31.5) + x3) + sqr((-51.5) + x7) + 2584*b43 =L= 2600; e79.. sqr((-31) + x4) + sqr((-51.5) + x8) + 2629*b44 =L= 2645; e80.. sqr((-12.5) + x1) + sqr((-7) + x5) + 7189*b33 =L= 7225; e81.. sqr((-11.5) + x2) + sqr((-7.5) + x6) + 7189*b34 =L= 7225; e82.. sqr((-13.5) + x3) + sqr((-8.5) + x7) + 7189*b35 =L= 7225; e83.. sqr((-14) + x4) + sqr((-8.5) + x8) + 7189*b36 =L= 7225; e84.. sqr((-47.5) + x1) + sqr((-77) + x5) + 6171*b37 =L= 6196; e85.. sqr((-46.5) + x2) + sqr((-77.5) + x6) + 6172*b38 =L= 6197; e86.. sqr((-48.5) + x3) + sqr((-78.5) + x7) + 6748*b39 =L= 6773; e87.. sqr((-49) + x4) + sqr((-78.5) + x8) + 6825*b40 =L= 6850; e88.. sqr((-27.5) + x1) + sqr((-47) + x5) + 2209*b41 =L= 2225; e89.. sqr((-26.5) + x2) + sqr((-47.5) + x6) + 2290*b42 =L= 2306; e90.. sqr((-28.5) + x3) + sqr((-48.5) + x7) + 2458*b43 =L= 2474; e91.. sqr((-29) + x4) + sqr((-48.5) + x8) + 2458*b44 =L= 2474; e92.. sqr((-12.5) + x1) + sqr((-13) + x5) + 6325*b33 =L= 6361; e93.. sqr((-11.5) + x2) + sqr((-12.5) + x6) + 6464*b34 =L= 6500; e94.. sqr((-13.5) + x3) + sqr((-11.5) + x7) + 6748*b35 =L= 6784; e95.. sqr((-14) + x4) + sqr((-11.5) + x8) + 6748*b36 =L= 6784; e96.. sqr((-47.5) + x1) + sqr((-83) + x5) + 7047*b37 =L= 7072; e97.. sqr((-46.5) + x2) + sqr((-82.5) + x6) + 6907*b38 =L= 6932; e98.. sqr((-48.5) + x3) + sqr((-81.5) + x7) + 7195*b39 =L= 7220; e99.. sqr((-49) + x4) + sqr((-81.5) + x8) + 7272*b40 =L= 7297; e100.. sqr((-27.5) + x1) + sqr((-53) + x5) + 2725*b41 =L= 2741; e101.. sqr((-26.5) + x2) + sqr((-52.5) + x6) + 2725*b42 =L= 2741; e102.. sqr((-28.5) + x3) + sqr((-51.5) + x7) + 2725*b43 =L= 2741; e103.. sqr((-29) + x4) + sqr((-51.5) + x8) + 2725*b44 =L= 2741; e104.. b33 + b37 + b41 =E= 1; e105.. b34 + b38 + b42 =E= 1; e106.. b35 + b39 + b43 =E= 1; e107.. b36 + b40 + b44 =E= 1; * set non-default bounds x1.lo = 11.5; x1.up = 52.5; x2.lo = 12.5; x2.up = 51.5; x3.lo = 10.5; x3.up = 53.5; x4.lo = 10; x4.up = 54; x5.lo = 7; x5.up = 82; x6.lo = 6.5; x6.up = 82.5; x7.lo = 5.5; x7.up = 83.5; x8.lo = 5.5; x8.up = 83.5; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91