MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance clay0305m
Non overlapping rectangular units must be placed within the confines of certain designated areas such that the cost of connecting these units is minimized.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 8092.50000000 (ALPHAECP) 8092.50000000 (ANTIGONE) 8092.50000000 (BARON) 8092.50000000 (BONMIN) 8092.50000000 (COUENNE) 8092.49999800 (CPLEX) 8092.50000000 (GUROBI) 8092.50000000 (LINDO) 8092.50000000 (SCIP) 8092.49999700 (SHOT) |
Referencesⓘ | Sawaya, Nicolas W, Reformulations, relaxations and cutting planes for generalized disjunctive programming, PhD thesis, Carnegie Mellon University, 2006. |
Sourceⓘ | CLay0305M.gms from CMU-IBM MINLP solver project page |
Applicationⓘ | Layout |
Added to libraryⓘ | 28 Sep 2013 |
Problem typeⓘ | MBQCP |
#Variablesⓘ | 85 |
#Binary Variablesⓘ | 55 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 10 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 20 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 155 |
#Linear Constraintsⓘ | 95 |
#Quadratic Constraintsⓘ | 60 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 475 |
#Nonlinear Nonzeros in Jacobianⓘ | 120 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 10 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 10 |
#Blocks in Hessian of Lagrangianⓘ | 10 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 8.3890e+03 |
Infeasibility of initial pointⓘ | 3.5 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 156 16 40 100 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 86 31 55 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 496 376 120 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36 ,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53 ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,objvar; Positive Variables x66,x67,x68,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79 ,x80,x81,x82,x83,x84,x85; Binary Variables b11,b12,b13,b14,b15,b16,b17,b18,b19,b20,b21,b22,b23,b24,b25 ,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36,b37,b38,b39,b40,b41,b42 ,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53,b54,b55,b56,b57,b58,b59 ,b60,b61,b62,b63,b64,b65; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156; e1.. - 300*x66 - 240*x67 - 210*x68 - 50*x69 - 100*x70 - 150*x71 - 30*x72 - 120*x73 - 25*x74 - 60*x75 - 300*x76 - 240*x77 - 210*x78 - 50*x79 - 100*x80 - 150*x81 - 30*x82 - 120*x83 - 25*x84 - 60*x85 + objvar =E= 0; e2.. - x1 + x2 + x66 =G= 0; e3.. - x1 + x3 + x67 =G= 0; e4.. - x1 + x4 + x68 =G= 0; e5.. - x1 + x5 + x69 =G= 0; e6.. - x2 + x3 + x70 =G= 0; e7.. - x2 + x4 + x71 =G= 0; e8.. - x2 + x5 + x72 =G= 0; e9.. - x3 + x4 + x73 =G= 0; e10.. - x3 + x5 + x74 =G= 0; e11.. - x4 + x5 + x75 =G= 0; e12.. x1 - x2 + x66 =G= 0; e13.. x1 - x3 + x67 =G= 0; e14.. x1 - x4 + x68 =G= 0; e15.. x1 - x5 + x69 =G= 0; e16.. x2 - x3 + x70 =G= 0; e17.. x2 - x4 + x71 =G= 0; e18.. x2 - x5 + x72 =G= 0; e19.. x3 - x4 + x73 =G= 0; e20.. x3 - x5 + x74 =G= 0; e21.. x4 - x5 + x75 =G= 0; e22.. - x6 + x7 + x76 =G= 0; e23.. - x6 + x8 + x77 =G= 0; e24.. - x6 + x9 + x78 =G= 0; e25.. - x6 + x10 + x79 =G= 0; e26.. - x7 + x8 + x80 =G= 0; e27.. - x7 + x9 + x81 =G= 0; e28.. - x7 + x10 + x82 =G= 0; e29.. - x8 + x9 + x83 =G= 0; e30.. - x8 + x10 + x84 =G= 0; e31.. - x9 + x10 + x85 =G= 0; e32.. x6 - x7 + x76 =G= 0; e33.. x6 - x8 + x77 =G= 0; e34.. x6 - x9 + x78 =G= 0; e35.. x6 - x10 + x79 =G= 0; e36.. x7 - x8 + x80 =G= 0; e37.. x7 - x9 + x81 =G= 0; e38.. x7 - x10 + x82 =G= 0; e39.. x8 - x9 + x83 =G= 0; e40.. x8 - x10 + x84 =G= 0; e41.. x9 - x10 + x85 =G= 0; e42.. x1 - x2 + 51*b11 =L= 45; e43.. x1 - x3 + 51*b12 =L= 47; e44.. x1 - x4 + 51*b13 =L= 47.5; e45.. x1 - x5 + 51*b14 =L= 44; e46.. x2 - x3 + 51*b15 =L= 46; e47.. x2 - x4 + 51*b16 =L= 46.5; e48.. x2 - x5 + 51*b17 =L= 43; e49.. x3 - x4 + 51*b18 =L= 48.5; e50.. x3 - x5 + 51*b19 =L= 45; e51.. x4 - x5 + 51*b20 =L= 45.5; e52.. - x1 + x2 + 51*b21 =L= 45; e53.. - x1 + x3 + 51*b22 =L= 47; e54.. - x1 + x4 + 51*b23 =L= 47.5; e55.. - x1 + x5 + 51*b24 =L= 44; e56.. - x2 + x3 + 51*b25 =L= 46; e57.. - x2 + x4 + 51*b26 =L= 46.5; e58.. - x2 + x5 + 51*b27 =L= 43; e59.. - x3 + x4 + 51*b28 =L= 48.5; e60.. - x3 + x5 + 51*b29 =L= 45; e61.. - x4 + x5 + 51*b30 =L= 45.5; e62.. x6 - x7 + 86*b31 =L= 80.5; e63.. x6 - x8 + 86*b32 =L= 81.5; e64.. x6 - x9 + 86*b33 =L= 81.5; e65.. x6 - x10 + 86*b34 =L= 79.5; e66.. x7 - x8 + 86*b35 =L= 82; e67.. x7 - x9 + 86*b36 =L= 82; e68.. x7 - x10 + 86*b37 =L= 80; e69.. x8 - x9 + 86*b38 =L= 83; e70.. x8 - x10 + 86*b39 =L= 81; e71.. x9 - x10 + 86*b40 =L= 81; e72.. - x6 + x7 + 86*b41 =L= 80.5; e73.. - x6 + x8 + 86*b42 =L= 81.5; e74.. - x6 + x9 + 86*b43 =L= 81.5; e75.. - x6 + x10 + 86*b44 =L= 79.5; e76.. - x7 + x8 + 86*b45 =L= 82; e77.. - x7 + x9 + 86*b46 =L= 82; e78.. - x7 + x10 + 86*b47 =L= 80; e79.. - x8 + x9 + 86*b48 =L= 83; e80.. - x8 + x10 + 86*b49 =L= 81; e81.. - x9 + x10 + 86*b50 =L= 81; e82.. b11 + b21 + b31 + b41 =E= 1; e83.. b12 + b22 + b32 + b42 =E= 1; e84.. b13 + b23 + b33 + b43 =E= 1; e85.. b14 + b24 + b34 + b44 =E= 1; e86.. b15 + b25 + b35 + b45 =E= 1; e87.. b16 + b26 + b36 + b46 =E= 1; e88.. b17 + b27 + b37 + b47 =E= 1; e89.. b18 + b28 + b38 + b48 =E= 1; e90.. b19 + b29 + b39 + b49 =E= 1; e91.. b20 + b30 + b40 + b50 =E= 1; e92.. sqr((-17.5) + x1) + sqr((-7) + x6) + 7964*b51 =L= 8000; e93.. sqr((-18.5) + x2) + sqr((-7.5) + x7) + 7808*b52 =L= 7844; e94.. sqr((-16.5) + x3) + sqr((-8.5) + x8) + 8128*b53 =L= 8164; e95.. sqr((-16) + x4) + sqr((-8.5) + x9) + 8213*b54 =L= 8249; e96.. sqr((-19.5) + x5) + sqr((-6.5) + x10) + 7660*b55 =L= 7696; e97.. sqr((-52.5) + x1) + sqr((-77) + x6) + 6481*b56 =L= 6581; e98.. sqr((-53.5) + x2) + sqr((-77.5) + x7) + 6622*b57 =L= 6722; e99.. sqr((-51.5) + x3) + sqr((-78.5) + x8) + 6910*b58 =L= 7010; e100.. sqr((-51) + x4) + sqr((-78.5) + x9) + 6910*b59 =L= 7010; e101.. sqr((-54.5) + x5) + sqr((-76.5) + x10) + 6342*b60 =L= 6442; e102.. sqr((-32.5) + x1) + sqr((-47) + x6) + 2209*b61 =L= 2225; e103.. sqr((-33.5) + x2) + sqr((-47.5) + x7) + 2194*b62 =L= 2210; e104.. sqr((-31.5) + x3) + sqr((-48.5) + x8) + 2562*b63 =L= 2578; e105.. sqr((-31) + x4) + sqr((-48.5) + x9) + 2617*b64 =L= 2633; e106.. sqr((-34.5) + x5) + sqr((-46.5) + x10) + 2025*b65 =L= 2041; e107.. sqr((-17.5) + x1) + sqr((-13) + x6) + 7040*b51 =L= 7076; e108.. sqr((-18.5) + x2) + sqr((-12.5) + x7) + 7033*b52 =L= 7069; e109.. sqr((-16.5) + x3) + sqr((-11.5) + x8) + 7657*b53 =L= 7693; e110.. sqr((-16) + x4) + sqr((-11.5) + x9) + 7742*b54 =L= 7778; e111.. sqr((-19.5) + x5) + sqr((-13.5) + x10) + 6589*b55 =L= 6625; e112.. sqr((-52.5) + x1) + sqr((-83) + x6) + 7357*b56 =L= 7457; e113.. sqr((-53.5) + x2) + sqr((-82.5) + x7) + 7357*b57 =L= 7457; e114.. sqr((-51.5) + x3) + sqr((-81.5) + x8) + 7357*b58 =L= 7457; e115.. sqr((-51) + x4) + sqr((-81.5) + x9) + 7357*b59 =L= 7457; e116.. sqr((-54.5) + x5) + sqr((-83.5) + x10) + 7357*b60 =L= 7457; e117.. sqr((-32.5) + x1) + sqr((-53) + x6) + 2725*b61 =L= 2741; e118.. sqr((-33.5) + x2) + sqr((-52.5) + x7) + 2629*b62 =L= 2645; e119.. sqr((-31.5) + x3) + sqr((-51.5) + x8) + 2829*b63 =L= 2845; e120.. sqr((-31) + x4) + sqr((-51.5) + x9) + 2884*b64 =L= 2900; e121.. sqr((-34.5) + x5) + sqr((-53.5) + x10) + 2541*b65 =L= 2557; e122.. sqr((-12.5) + x1) + sqr((-7) + x6) + 8389*b51 =L= 8425; e123.. sqr((-11.5) + x2) + sqr((-7.5) + x7) + 8389*b52 =L= 8425; e124.. sqr((-13.5) + x3) + sqr((-8.5) + x8) + 8389*b53 =L= 8425; e125.. sqr((-14) + x4) + sqr((-8.5) + x9) + 8389*b54 =L= 8425; e126.. sqr((-10.5) + x5) + sqr((-6.5) + x10) + 8389*b55 =L= 8425; e127.. sqr((-47.5) + x1) + sqr((-77) + x6) + 6096*b56 =L= 6196; e128.. sqr((-46.5) + x2) + sqr((-77.5) + x7) + 6097*b57 =L= 6197; e129.. sqr((-48.5) + x3) + sqr((-78.5) + x8) + 6673*b58 =L= 6773; e130.. sqr((-49) + x4) + sqr((-78.5) + x9) + 6750*b59 =L= 6850; e131.. sqr((-45.5) + x5) + sqr((-76.5) + x10) + 5685*b60 =L= 5785; e132.. sqr((-27.5) + x1) + sqr((-47) + x6) + 2484*b61 =L= 2500; e133.. sqr((-26.5) + x2) + sqr((-47.5) + x7) + 2565*b62 =L= 2581; e134.. sqr((-28.5) + x3) + sqr((-48.5) + x8) + 2733*b63 =L= 2749; e135.. sqr((-29) + x4) + sqr((-48.5) + x9) + 2733*b64 =L= 2749; e136.. sqr((-25.5) + x5) + sqr((-46.5) + x10) + 2484*b65 =L= 2500; e137.. sqr((-12.5) + x1) + sqr((-13) + x6) + 7465*b51 =L= 7501; e138.. sqr((-11.5) + x2) + sqr((-12.5) + x7) + 7614*b52 =L= 7650; e139.. sqr((-13.5) + x3) + sqr((-11.5) + x8) + 7918*b53 =L= 7954; e140.. sqr((-14) + x4) + sqr((-11.5) + x9) + 7918*b54 =L= 7954; e141.. sqr((-10.5) + x5) + sqr((-13.5) + x10) + 7318*b55 =L= 7354; e142.. sqr((-47.5) + x1) + sqr((-83) + x6) + 6972*b56 =L= 7072; e143.. sqr((-46.5) + x2) + sqr((-82.5) + x7) + 6832*b57 =L= 6932; e144.. sqr((-48.5) + x3) + sqr((-81.5) + x8) + 7120*b58 =L= 7220; e145.. sqr((-49) + x4) + sqr((-81.5) + x9) + 7197*b59 =L= 7297; e146.. sqr((-45.5) + x5) + sqr((-83.5) + x10) + 6700*b60 =L= 6800; e147.. sqr((-27.5) + x1) + sqr((-53) + x6) + 3000*b61 =L= 3016; e148.. sqr((-26.5) + x2) + sqr((-52.5) + x7) + 3000*b62 =L= 3016; e149.. sqr((-28.5) + x3) + sqr((-51.5) + x8) + 3000*b63 =L= 3016; e150.. sqr((-29) + x4) + sqr((-51.5) + x9) + 3000*b64 =L= 3016; e151.. sqr((-25.5) + x5) + sqr((-53.5) + x10) + 3000*b65 =L= 3016; e152.. b51 + b56 + b61 =E= 1; e153.. b52 + b57 + b62 =E= 1; e154.. b53 + b58 + b63 =E= 1; e155.. b54 + b59 + b64 =E= 1; e156.. b55 + b60 + b65 =E= 1; * set non-default bounds x1.lo = 11.5; x1.up = 57.5; x2.lo = 12.5; x2.up = 56.5; x3.lo = 10.5; x3.up = 58.5; x4.lo = 10; x4.up = 59; x5.lo = 13.5; x5.up = 55.5; x6.lo = 7; x6.up = 87; x7.lo = 6.5; x7.up = 87.5; x8.lo = 5.5; x8.up = 88.5; x9.lo = 5.5; x9.up = 88.5; x10.lo = 7.5; x10.up = 86.5; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91