MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance contvar
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 809149.82720000 (ANTIGONE) 559579.47410000 (BARON) 413820.19670000 (COUENNE) 415271.62660000 (LINDO) 505581.07020000 (SCIP) 127415.83830000 (SHOT) |
Sourceⓘ | Aldo Vecchietti's Model Collection |
Applicationⓘ | Batch processing |
Added to libraryⓘ | 01 May 2001 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 296 |
#Binary Variablesⓘ | 88 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 144 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 40 |
#Nonlinear Nonzeros in Objectiveⓘ | 40 |
#Constraintsⓘ | 284 |
#Linear Constraintsⓘ | 165 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 12 |
#General Nonlinear Constraintsⓘ | 107 |
Operands in Gen. Nonlin. Functionsⓘ | cvpower div exp log mul sqr |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 1240 |
#Nonlinear Nonzeros in Jacobianⓘ | 490 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 1108 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 116 |
#Blocks in Hessian of Lagrangianⓘ | 16 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 125 |
Average blocksize in Hessian of Lagrangianⓘ | 9.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.5000e-03 |
Maximal coefficientⓘ | 3.6000e+05 |
Infeasibility of initial pointⓘ | 5.706 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 285 123 96 66 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 297 209 88 0 0 0 0 0 * FX 17 * * Nonzero counts * Total const NL DLL * 1281 751 530 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,objvar,x98,x99,x100,x101,x102 ,x103,x104,x105,x106,x107,x108,x109,b110,b111,b112,b113,b114,b115 ,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128 ,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141 ,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154 ,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167 ,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180 ,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193 ,b194,b195,b196,b197,x198,x199,x200,x201,x202,x203,x204,x205,x206 ,x207,x208,x209,x210,x211,x212,x213,x214,x215,x216,x217,x218,x219 ,x220,x221,x222,x223,x224,x225,x226,x227,x228,x229,x230,x231,x232 ,x233,x234,x235,x236,x237,x238,x239,x240,x241,x242,x243,x244,x245 ,x246,x247,x248,x249,x250,x251,x252,x253,x254,x255,x256,x257,x258 ,x259,x260,x261,x262,x263,x264,x265,x266,x267,x268,x269,x270,x271 ,x272,x273,x274,x275,x276,x277,x278,x279,x280,x281,x282,x283,x284 ,x285,x286,x287,x288,x289,x290,x291,x292,x293,x294,x295,x296,x297; Positive Variables x17,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30 ,x31,x32,x33,x34,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47 ,x48,x81,x82,x83,x84,x85,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96; Binary Variables b110,b111,b112,b113,b114,b115,b116,b117,b118,b119,b120,b121 ,b122,b123,b124,b125,b126,b127,b128,b129,b130,b131,b132,b133,b134 ,b135,b136,b137,b138,b139,b140,b141,b142,b143,b144,b145,b146,b147 ,b148,b149,b150,b151,b152,b153,b154,b155,b156,b157,b158,b159,b160 ,b161,b162,b163,b164,b165,b166,b167,b168,b169,b170,b171,b172,b173 ,b174,b175,b176,b177,b178,b179,b180,b181,b182,b183,b184,b185,b186 ,b187,b188,b189,b190,b191,b192,b193,b194,b195,b196,b197; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168 ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181 ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194 ,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207 ,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218,e219,e220 ,e221,e222,e223,e224,e225,e226,e227,e228,e229,e230,e231,e232,e233 ,e234,e235,e236,e237,e238,e239,e240,e241,e242,e243,e244,e245,e246 ,e247,e248,e249,e250,e251,e252,e253,e254,e255,e256,e257,e258,e259 ,e260,e261,e262,e263,e264,e265,e266,e267,e268,e269,e270,e271,e272 ,e273,e274,e275,e276,e277,e278,e279,e280,e281,e282,e283,e284,e285; e1.. x1 - x17 + x89 - x198 =G= 0; e2.. x2 - x18 + x90 - x199 =G= 0; e3.. x3 - x19 + x91 - x200 =G= 0; e4.. x4 - x20 + x92 - x201 =G= 0; e5.. x5 - x21 + x93 - x202 =G= 0; e6.. x6 - x22 + x94 - x203 =G= 0; e7.. x7 - x23 + x95 - x204 =G= 0; e8.. x8 - x24 + x96 - x205 =G= 0; e9.. x1 - x25 + x89 - x206 =G= 0; e10.. x2 - x26 + x90 - x207 =G= 0; e11.. x3 - x27 + x91 - x208 =G= 0; e12.. x4 - x28 + x92 - x209 =G= 0; e13.. x5 - x29 + x93 - x210 =G= 0; e14.. x6 - x30 + x94 - x211 =G= 0; e15.. x7 - x31 + x95 - x212 =G= 0; e16.. x8 - x32 + x96 - x213 =G= 0; e17.. x1 - x33 + x89 - x214 =G= 0; e18.. x2 - x34 + x90 - x215 =G= 0; e19.. x3 - x35 + x91 - x216 =G= 0; e20.. x4 - x36 + x92 - x217 =G= 0; e21.. x5 - x37 + x93 - x218 =G= 0; e22.. x6 - x38 + x94 - x219 =G= 0; e23.. x7 - x39 + x95 - x220 =G= 0; e24.. x8 - x40 + x96 - x221 =G= 0; e25.. x1 - x41 + x89 - x222 =G= 0; e26.. x2 - x42 + x90 - x223 =G= 0; e27.. x3 - x43 + x91 - x224 =G= 0; e28.. x4 - x44 + x92 - x225 =G= 0; e29.. x5 - x45 + x93 - x226 =G= 0; e30.. x6 - x46 + x94 - x227 =G= 0; e31.. x7 - x47 + x95 - x228 =G= 0; e32.. x8 - x48 + x96 - x229 =G= 0; e33.. x10 - x20 + x92 - x230 =G= 0; e34.. x11 - x24 + x96 - x231 =G= 0; e35.. x9 - x26 + x90 - x232 =G= 0; e36.. x11 - x32 + x96 - x233 =G= 0; e37.. x9 - x34 + x90 - x234 =G= 0; e38.. x11 - x40 + x96 - x235 =G= 0; e39.. x10 - x44 + x92 - x236 =G= 0; e40.. x11 - x48 + x96 - x237 =G= 0; e41.. -log(15.6/(x280*x266*x267*x268*x269)) + x198 =E= 0; e42.. -log(15.6/(x280*x266*x267*x268*x269)) + x199 =E= 0; e43.. -log(15.6/(x284*x266*x267*x268*x269)) + x200 =E= 0; e44.. -log(15.6/(x284*x266*x267*x268*x269)) + x201 =E= 0; e45.. -log((7.8 + 15.6*x290)/(x284*x266*x267*x268*x269)) + x202 =E= 0; e46.. -log((0.075 + 0.075*x294)/(exp(-0.03*x292)*x269*x268)) + x203 =E= 0; e47.. -log(0.075/(exp(-0.03*x292)*x269*x268)) + x204 =E= 0; e48.. -log((0.05*x294/sqr(1 + x294) + 0.025*x268)/(x268*x269*exp(-0.03*x292))) + x205 =E= 0; e49.. -log(20.8/(x281*x272*x270*x271)) + x206 =E= 0; e50.. -log(20.8/(x281*x272*x270*x271)) + x207 =E= 0; e51.. -log((20.8 - 20.8*x281/x285 + 20.8*x288)/(x281*x270*x271*x272)) + x210 =E= 0; e52.. -log((0.05 + 0.05*x295)/(x272*x271)) + x211 =E= 0; e53.. -log(0.05/(x272*x271)) + x212 =E= 0; e54.. -log((0.025*x295/sqr(1 + x295) + 0.025*x271)/(x271*x272)) + x213 =E= 0; e55.. -log(62.5/(x282*x275*x273*x274)) + x214 =E= 0; e56.. -log(62.5/(x282*x275*x273*x274)) + x215 =E= 0; e57.. -log((62.5 - 62.5*x282/x286 + 62.5*x289)/(x282*x273*x274*x275)) + x218 =E= 0; e58.. -log((0.15 + 0.15*x296)/(x275*x274)) + x219 =E= 0; e59.. -log(0.15/(x275*x274)) + x220 =E= 0; e60.. -log((0.125*x296/sqr(1 + x296) + 0.025*x274)/(x274*x275)) + x221 =E= 0; e61.. -log(31.2/(x283*x276*x277*x278*x279)) + x222 =E= 0; e62.. -log(31.2/(x283*x276*x277*x278*x279)) + x223 =E= 0; e63.. -log(31.2/(x287*x276*x277*x278*x279)) + x224 =E= 0; e64.. -log(31.2/(x287*x276*x277*x278*x279)) + x225 =E= 0; e65.. -log((15.6 + 31.2*x291)/(x287*x276*x277*x278*x279)) + x226 =E= 0; e66.. -log((0.15 + 0.15*x297)/(exp(-0.03*x293)*x279*x278)) + x227 =E= 0; e67.. -log(0.15/(exp(-0.03*x293)*x279*x278)) + x228 =E= 0; e68.. -log((0.125*x297/sqr(1 + x297) + 0.025*x278)/(x278*x279*exp(-0.03*x293))) + x229 =E= 0; e69.. -log((7.8 + 15.6*x290)/(x284*x266*x267*x268*x269)) + x230 =E= 0; e70.. -log((20.8 - 20.8*x281/x285 + 20.8*x288)/(x281*x270*x271*x272)) + x232 =E= 0; e71.. -log((62.5 - 62.5*x282/x286 + 62.5*x289)/(x282*x273*x274*x275)) + x234 =E= 0; e72.. -log((15.6 + 31.2*x291)/(x287*x276*x277*x278*x279)) + x236 =E= 0; e73.. -exp(x199) + x238 =E= 0; e74.. -15.6/(x284*x266*x267*x268*x269) + x239 =E= 0; e75.. -15.6/(x284*x266*x267*x268*x269) + x240 =E= 0; e76.. -(7.8 + 15.6*x290)/(x284*x266*x267*x268*x269) + x241 =E= 0; e77.. -0.075/(exp(-0.03*x292)*x269*x268) + x242 =E= 0; e78.. -0.075/(exp(-0.03*x292)*x269*x268) + x243 =E= 0; e79.. -exp(x205) + x244 =E= 0; e80.. -exp(x207) + x245 =E= 0; e81.. -(20.8 - 20.8*x281/x285 + 20.8*x288)/(x281*x270*x271*x272) + x246 =E= 0; e82.. -0.05/(x272*x271) + x249 =E= 0; e83.. -0.05/(x272*x271) + x250 =E= 0; e84.. -exp(x213) + x251 =E= 0; e85.. -exp(x215) + x252 =E= 0; e86.. -(62.5 - 62.5*x282/x286 + 62.5*x289)/(x282*x273*x274*x275) + x253 =E= 0; e87.. -0.15/(x275*x274) + x256 =E= 0; e88.. -0.15/(x275*x274) + x257 =E= 0; e89.. -exp(x221) + x258 =E= 0; e90.. -exp(x223) + x259 =E= 0; e91.. -31.2/(x287*x276*x277*x278*x279) + x260 =E= 0; e92.. -31.2/(x287*x276*x277*x278*x279) + x261 =E= 0; e93.. -(15.6 + 31.2*x291)/(x287*x276*x277*x278*x279) + x262 =E= 0; e94.. -0.15/(exp(-0.03*x293)*x279*x278) + x263 =E= 0; e95.. -0.15/(exp(-0.03*x293)*x279*x278) + x264 =E= 0; e96.. -exp(x229) + x265 =E= 0; e97.. -log(4 + 3.8*log(0.35*x280/(1 - 0.0181818181818182*x280))) + x49 =E= 0; e98.. -log(1.25 + (62.5 - 62.5*x280/x284)/x280*x266*x267*x268*x269*exp(x18)/ exp(x12)) + x50 =E= 0; e99.. -log(1.25 + 12.5*x292/(x284*x266*x267*x268*x269)*exp(x19)/exp(x13)) + x51 =E= 0; e100.. -log(1.75 + (62.5 + 125*x290)/(x284*x266*x267*x268*x269)*exp(x20)/exp( x14)) + x52 =E= 0; e101.. -log(1 + (312.5 + 625*x290)/(x284*x266*x267*x268*x269)*(1 - 0.24*(1 - exp(-1.5*x292))*x284*(1 - 0.5*exp(-2*x290))/(25 + 50*x290))*exp(x21)/ exp(x15)) + x53 =E= 0; e102.. -log(0.3 + (3 - 2*x294/sqr(1 + x294) - x268)/(x268*x269*exp(-0.03*x292)) *exp(x23)/exp(x16)) + x55 =E= 0; e103.. -log(0.375 + (0.005*x294/sqr(1 + x294) + 0.0025*x268)/(x268*x269*exp(- 0.03*x292))*exp(x24)/exp(x11)) + x56 =E= 0; e104.. -log(4 + 3.8*log(0.35*x281/(1 - 0.0181818181818182*x281))) + x57 =E= 0; e105.. -log(1.75 + (83.5 - 83.5*x281/x285 + 83.5*x288)/x281*x270*x271*x272*exp( x26)/exp(x12)) + x58 =E= 0; e106.. -log(1 + (835 - 835*x281/x285 + 835*x288)/(x281*x270*x271*x272)*(1 - 0.12*x281*x270/(50 - 50*x281/x285 + 50*x288))*exp(x29)/exp(x15)) + x61 =E= 0; e107.. -log(0.3 + (2 - x295/sqr(1 + x295) - x271)/(x271*x272)*exp(x31)/exp(x16) ) + x63 =E= 0; e108.. -log(0.375 + (0.0025*x295/sqr(1 + x295) + 0.0025*x271)/(x271*x272)*exp( x32)/exp(x11)) + x64 =E= 0; e109.. -log(4 + 3.8*log(0.35*x282/(1 - 0.0181818181818182*x282))) + x65 =E= 0; e110.. -log(1.75 + (250 - 250*x282/x286 + 250*x289)/(x282*x273*x274*x275)*exp( x34)/exp(x12)) + x66 =E= 0; e111.. -log(1 + (2500 - 2500*x282/x286 + 2500*x289)/(x282*x273*x274*x275)*(1 - 0.12*x282*x273/(50 - 50*x282/x286 + 50*x289))*exp(x37)/exp(x15)) + x69 =E= 0; e112.. -log(0.3 + (6 - 5*x296/sqr(1 + x296) - x274)/(x274*x275)*exp(x39)/exp( x16)) + x71 =E= 0; e113.. -log(0.375 + (0.0125*x296/sqr(1 + x296) + 0.0025*x274)/(x274*x275)*exp( x40)/exp(x11)) + x72 =E= 0; e114.. -log(4 + 3.8*log(0.35*x283/(1 - 0.0181818181818182*x283))) + x73 =E= 0; e115.. -log(1.25 + (125 - 125*x283/x287)/(x283*x276*x277*x278*x279)*exp(x42)/ exp(x12)) + x74 =E= 0; e116.. -log(1.25 + 25*x293/(x287*x276*x277*x278*x279)*exp(x43)/exp(x13)) + x75 =E= 0; e117.. -log(1.75 + (125 + 250*x291)/(x287*x276*x277*x278*x279)*exp(x44)/exp(x14 )) + x76 =E= 0; e118.. -log(1 + (625 + 1250*x291)/(x287*x276*x277*x278*x279)*(1 - 0.24*(1 - exp(-1.5*x293))*x287*(1 - 0.5*exp(-2*x291))/(25 + 50*x291))*exp(x45)/ exp(x15)) + x77 =E= 0; e119.. -log(0.3 + (6 - 5*x297/sqr(1 + x297) - x278)/(x278*x279*exp(-0.03*x293)) *exp(x47)/exp(x16)) + x79 =E= 0; e120.. -log(0.375 + (0.0125*x297/sqr(1 + x297) + 0.0025*x278)/(x278*x279*exp(- 0.03*x293))*exp(x48)/exp(x11)) + x80 =E= 0; e121.. -(1 - exp(-1.5*x292))*exp(-0.03*x292) + x266 =E= 0; e122.. 0.5*exp(-2*x290) + x267 =E= 1; e123.. -25.1*x294/((1 + 10**(-3.5 + 4.9*x294/(1 + x294))*x294)*(1 + 25.1*x294)) + x268 =E= 0; e124.. x281/x285*exp(-x288*x285/x281) + x270 =E= 1; e125.. -50.1*x295/((1 + 10**(-4.25 + 5.95*x295/(1 + x295))*x295)*(1 + 50.1*x295 )) + x271 =E= 0; e126.. x282/x286*exp(-x289*x286/x282) + x273 =E= 1; e127.. -31.6*x296/((1 + 10**(-3.75 + 5.25*x296/(1 + x296))*x296)*(1 + 31.6*x296 )) + x274 =E= 0; e128.. -(1 - exp(-1.5*x293))*exp(-0.03*x293) + x276 =E= 0; e129.. 0.5*exp(-2*x291) + x277 =E= 1; e130.. -39.8*x297/((1 + 10**(-4 + 5.6*x297/(1 + x297))*x297)*(1 + 39.8*x297)) + x278 =E= 0; e131.. - x17 + x49 - x81 - x106 =L= 0; e132.. - x18 + x50 - x82 - x106 =L= 0; e133.. - x19 + x51 - x83 - x106 =L= 0; e134.. - x20 + x52 - x84 - x106 =L= 0; e135.. - x21 + x53 - x85 - x106 =L= 0; e136.. - x22 + x54 - x86 - x106 =L= 0; e137.. - x23 + x55 - x87 - x106 =L= 0; e138.. - x24 + x56 - x88 - x106 =L= 0; e139.. - x25 + x57 - x81 - x107 =L= 0; e140.. - x26 + x58 - x82 - x107 =L= 0; e141.. - x27 + x59 - x83 - x107 =L= 0; e142.. - x28 + x60 - x84 - x107 =L= 0; e143.. - x29 + x61 - x85 - x107 =L= 0; e144.. - x30 + x62 - x86 - x107 =L= 0; e145.. - x31 + x63 - x87 - x107 =L= 0; e146.. - x32 + x64 - x88 - x107 =L= 0; e147.. - x33 + x65 - x81 - x108 =L= 0; e148.. - x34 + x66 - x82 - x108 =L= 0; e149.. - x35 + x67 - x83 - x108 =L= 0; e150.. - x36 + x68 - x84 - x108 =L= 0; e151.. - x37 + x69 - x85 - x108 =L= 0; e152.. - x38 + x70 - x86 - x108 =L= 0; e153.. - x39 + x71 - x87 - x108 =L= 0; e154.. - x40 + x72 - x88 - x108 =L= 0; e155.. - x41 + x73 - x81 - x109 =L= 0; e156.. - x42 + x74 - x82 - x109 =L= 0; e157.. - x43 + x75 - x83 - x109 =L= 0; e158.. - x44 + x76 - x84 - x109 =L= 0; e159.. - x45 + x77 - x85 - x109 =L= 0; e160.. - x46 + x78 - x86 - x109 =L= 0; e161.. - x47 + x79 - x87 - x109 =L= 0; e162.. - x48 + x80 - x88 - x109 =L= 0; e163.. 6000*exp(x106) + 3000*exp(x107) + 1500*exp(x108) + 1000*exp(x109) =L= 6000; e164.. x17 - x18 - 2.99573227355399*b110 =L= 0; e165.. x18 - x19 - 2.99573227355399*b111 =L= 0; e166.. x19 - x20 - 2.99573227355399*b112 =L= 0; e167.. x20 - x21 - 2.99573227355399*b113 =L= 0; e168.. x21 - x22 - 2.99573227355399*b114 =L= 0; e169.. x22 - x23 - 2.99573227355399*b115 =L= 0; e170.. x23 - x24 - 2.99573227355399*b116 =L= 0; e171.. x25 - x26 - 2.99573227355399*b110 =L= 0; e172.. x26 - x27 - 2.99573227355399*b111 =L= 0; e173.. x27 - x28 - 2.99573227355399*b112 =L= 0; e174.. x28 - x29 - 2.99573227355399*b113 =L= 0; e175.. x29 - x30 - 2.99573227355399*b114 =L= 0; e176.. x30 - x31 - 2.99573227355399*b115 =L= 0; e177.. x31 - x32 - 2.99573227355399*b116 =L= 0; e178.. x33 - x34 - 2.99573227355399*b110 =L= 0; e179.. x34 - x35 - 2.99573227355399*b111 =L= 0; e180.. x35 - x36 - 2.99573227355399*b112 =L= 0; e181.. x36 - x37 - 2.99573227355399*b113 =L= 0; e182.. x37 - x38 - 2.99573227355399*b114 =L= 0; e183.. x38 - x39 - 2.99573227355399*b115 =L= 0; e184.. x39 - x40 - 2.99573227355399*b116 =L= 0; e185.. x41 - x42 - 2.99573227355399*b110 =L= 0; e186.. x42 - x43 - 2.99573227355399*b111 =L= 0; e187.. x43 - x44 - 2.99573227355399*b112 =L= 0; e188.. x44 - x45 - 2.99573227355399*b113 =L= 0; e189.. x45 - x46 - 2.99573227355399*b114 =L= 0; e190.. x46 - x47 - 2.99573227355399*b115 =L= 0; e191.. x47 - x48 - 2.99573227355399*b116 =L= 0; e192.. x17 - x18 + 2.99573227355399*b110 =G= 0; e193.. x18 - x19 + 2.99573227355399*b111 =G= 0; e194.. x19 - x20 + 2.99573227355399*b112 =G= 0; e195.. x20 - x21 + 2.99573227355399*b113 =G= 0; e196.. x21 - x22 + 2.99573227355399*b114 =G= 0; e197.. x22 - x23 + 2.99573227355399*b115 =G= 0; e198.. x23 - x24 + 2.99573227355399*b116 =G= 0; e199.. x25 - x26 + 2.99573227355399*b110 =G= 0; e200.. x26 - x27 + 2.99573227355399*b111 =G= 0; e201.. x27 - x28 + 2.99573227355399*b112 =G= 0; e202.. x28 - x29 + 2.99573227355399*b113 =G= 0; e203.. x29 - x30 + 2.99573227355399*b114 =G= 0; e204.. x30 - x31 + 2.99573227355399*b115 =G= 0; e205.. x31 - x32 + 2.99573227355399*b116 =G= 0; e206.. x33 - x34 + 2.99573227355399*b110 =G= 0; e207.. x34 - x35 + 2.99573227355399*b111 =G= 0; e208.. x35 - x36 + 2.99573227355399*b112 =G= 0; e209.. x36 - x37 + 2.99573227355399*b113 =G= 0; e210.. x37 - x38 + 2.99573227355399*b114 =G= 0; e211.. x38 - x39 + 2.99573227355399*b115 =G= 0; e212.. x39 - x40 + 2.99573227355399*b116 =G= 0; e213.. x41 - x42 + 2.99573227355399*b110 =G= 0; e214.. x42 - x43 + 2.99573227355399*b111 =G= 0; e215.. x43 - x44 + 2.99573227355399*b112 =G= 0; e216.. x44 - x45 + 2.99573227355399*b113 =G= 0; e217.. x45 - x46 + 2.99573227355399*b114 =G= 0; e218.. x46 - x47 + 2.99573227355399*b115 =G= 0; e219.. x47 - x48 + 2.99573227355399*b116 =G= 0; e220.. -(exp(x17 - x98) + exp(x18 - x98))*x238 - 10*b110 =G= -11; e221.. -(exp(x18 - x99) + exp(x19 - x99))*x239 - 10*b111 =G= -11; e222.. -(exp(x19 - x100) + exp(x20 - x100))*x240 - 10*b112 =G= -11; e223.. -(exp(x20 - x101) + exp(x21 - x101))*x241 - 10*b113 =G= -11; e224.. -(exp(x21 - x102) + exp(x22 - x102))*x242 - 10*b114 =G= -11; e225.. -(exp(x22 - x103) + exp(x23 - x103))*x243 - 10*b115 =G= -11; e226.. -(exp(x23 - x104) + exp(x24 - x104))*x244 - 10*b116 =G= -11; e227.. -(exp(x25 - x98) + exp(x26 - x98))*x245 - 10*b110 =G= -11; e228.. -(exp(x26 - x99) + exp(x27 - x99))*x246 - 10*b111 =G= -11; e229.. -(exp(x27 - x100) + exp(x28 - x100))*x247 - 10*b112 =G= -11; e230.. -(exp(x28 - x101) + exp(x29 - x101))*x248 - 10*b113 =G= -11; e231.. -(exp(x29 - x102) + exp(x30 - x102))*x249 - 10*b114 =G= -11; e232.. -(exp(x30 - x103) + exp(x31 - x103))*x250 - 10*b115 =G= -11; e233.. -(exp(x31 - x104) + exp(x32 - x104))*x251 - 10*b116 =G= -11; e234.. -(exp(x33 - x98) + exp(x34 - x98))*x252 - 10*b110 =G= -11; e235.. -(exp(x34 - x99) + exp(x35 - x99))*x253 - 10*b111 =G= -11; e236.. -(exp(x35 - x100) + exp(x36 - x100))*x254 - 10*b112 =G= -11; e237.. -(exp(x36 - x101) + exp(x37 - x101))*x255 - 10*b113 =G= -11; e238.. -(exp(x37 - x102) + exp(x38 - x102))*x256 - 10*b114 =G= -11; e239.. -(exp(x38 - x103) + exp(x39 - x103))*x257 - 10*b115 =G= -11; e240.. -(exp(x39 - x104) + exp(x40 - x104))*x258 - 10*b116 =G= -11; e241.. -(exp(x41 - x98) + exp(x42 - x98))*x259 - 10*b110 =G= -11; e242.. -(exp(x42 - x99) + exp(x43 - x99))*x260 - 10*b111 =G= -11; e243.. -(exp(x43 - x100) + exp(x44 - x100))*x261 - 10*b112 =G= -11; e244.. -(exp(x44 - x101) + exp(x45 - x101))*x262 - 10*b113 =G= -11; e245.. -(exp(x45 - x102) + exp(x46 - x102))*x263 - 10*b114 =G= -11; e246.. -(exp(x46 - x103) + exp(x47 - x103))*x264 - 10*b115 =G= -11; e247.. -(exp(x47 - x104) + exp(x48 - x104))*x265 - 10*b116 =G= -11; e248.. x81 - 0.693147180559945*b126 - 1.09861228866811*b134 - 1.38629436111989*b142 - 1.6094379124341*b150 =E= 0; e249.. x82 - 0.693147180559945*b127 - 1.09861228866811*b135 - 1.38629436111989*b143 - 1.6094379124341*b151 =E= 0; e250.. x83 - 0.693147180559945*b128 - 1.09861228866811*b136 - 1.38629436111989*b144 - 1.6094379124341*b152 =E= 0; e251.. x84 - 0.693147180559945*b129 - 1.09861228866811*b137 - 1.38629436111989*b145 - 1.6094379124341*b153 =E= 0; e252.. x85 - 0.693147180559945*b130 - 1.09861228866811*b138 - 1.38629436111989*b146 - 1.6094379124341*b154 =E= 0; e253.. x86 - 0.693147180559945*b131 - 1.09861228866811*b139 - 1.38629436111989*b147 - 1.6094379124341*b155 =E= 0; e254.. x87 - 0.693147180559945*b132 - 1.09861228866811*b140 - 1.38629436111989*b148 - 1.6094379124341*b156 =E= 0; e255.. x88 - 0.693147180559945*b133 - 1.09861228866811*b141 - 1.38629436111989*b149 - 1.6094379124341*b157 =E= 0; e256.. b118 + b126 + b134 + b142 + b150 =E= 1; e257.. b119 + b127 + b135 + b143 + b151 =E= 1; e258.. b120 + b128 + b136 + b144 + b152 =E= 1; e259.. b121 + b129 + b137 + b145 + b153 =E= 1; e260.. b122 + b130 + b138 + b146 + b154 =E= 1; e261.. b123 + b131 + b139 + b147 + b155 =E= 1; e262.. b124 + b132 + b140 + b148 + b156 =E= 1; e263.. b125 + b133 + b141 + b149 + b157 =E= 1; e264.. x89 - 0.693147180559945*b166 - 1.09861228866811*b174 - 1.38629436111989*b182 - 1.6094379124341*b190 =E= 0; e265.. x90 - 0.693147180559945*b167 - 1.09861228866811*b175 - 1.38629436111989*b183 - 1.6094379124341*b191 =E= 0; e266.. x91 - 0.693147180559945*b168 - 1.09861228866811*b176 - 1.38629436111989*b184 - 1.6094379124341*b192 =E= 0; e267.. x92 - 0.693147180559945*b169 - 1.09861228866811*b177 - 1.38629436111989*b185 - 1.6094379124341*b193 =E= 0; e268.. x93 - 0.693147180559945*b170 - 1.09861228866811*b178 - 1.38629436111989*b186 - 1.6094379124341*b194 =E= 0; e269.. x94 - 0.693147180559945*b171 - 1.09861228866811*b179 - 1.38629436111989*b187 - 1.6094379124341*b195 =E= 0; e270.. x95 - 0.693147180559945*b172 - 1.09861228866811*b180 - 1.38629436111989*b188 - 1.6094379124341*b196 =E= 0; e271.. x96 - 0.693147180559945*b173 - 1.09861228866811*b181 - 1.38629436111989*b189 - 1.6094379124341*b197 =E= 0; e272.. b158 + b166 + b174 + b182 + b190 =E= 1; e273.. b159 + b167 + b175 + b183 + b191 =E= 1; e274.. b160 + b168 + b176 + b184 + b192 =E= 1; e275.. b161 + b169 + b177 + b185 + b193 =E= 1; e276.. b162 + b170 + b178 + b186 + b194 =E= 1; e277.. b163 + b171 + b179 + b187 + b195 =E= 1; e278.. b164 + b172 + b180 + b188 + b196 =E= 1; e279.. b165 + b173 + b181 + b189 + b197 =E= 1; e280.. b110 + b111 + b112 + b113 + b114 + b115 + b116 + b117 =L= 7; e281.. -(63400*exp(0.6*x1 + x81 + x89) + 5750*exp(0.6*x2 + x82 + x90) + 5750* exp(0.6*x3 + x83 + x91) + 5750*exp(0.6*x4 + x84 + x92) + 5750*exp(0.6*x5 + x85 + x93) + 23100*exp(0.65*x6 + x86 + x94) + 5750*exp(0.6*x7 + x87 + x95) + 5750*exp(0.6*x8 + x88 + x96) + 5750*exp(0.6*x9 + x82 + x90) + 5750*exp(0.6*x10 + x84 + x92) + 360000*exp(0.975*x11 + x88 + x96) + 2900 *exp(0.85*x12 + x82 + x90) + 12100*exp(0.75*x13 + x83 + x91) + 2900*exp( 0.85*x14 + x84 + x92) + 2900*exp(0.85*x15 + x85 + x93) + 2900*exp(0.85* x16 + x87 + x95) + 5750*(exp(0.6*x98) + exp(0.6*x99) + exp(0.6*x100) + exp(0.6*x101) + exp(0.6*x102) + exp(0.6*x103) + exp(0.6*x104) + exp(0.6* x105))) + objvar =E= 0; e282.. x280 - x284 =L= 0; e283.. x281 - x285 =L= 0; e284.. x282 - x286 =L= 0; e285.. x283 - x287 =L= 0; * set non-default bounds x1.lo = -1.6094379124341; x1.up = 3.68887945411394; x2.lo = -1.6094379124341; x2.up = 3.68887945411394; x3.lo = -1.6094379124341; x3.up = 3.68887945411394; x4.lo = -1.6094379124341; x4.up = 3.68887945411394; x5.lo = -1.6094379124341; x5.up = 3.68887945411394; x6.lo = -1.6094379124341; x6.up = 3.68887945411394; x7.lo = -1.6094379124341; x7.up = 3.68887945411394; x8.lo = -6.90775527898214; x8.up = 3.68887945411394; x9.lo = -1.6094379124341; x9.up = 3.68887945411394; x10.lo = -1.6094379124341; x10.up = 3.68887945411394; x11.lo = -6.90775527898214; x11.up = -0.693147180559945; x12.lo = 0.693147180559945; x12.up = 6.90775527898214; x13.lo = -0.693147180559945; x13.up = 2.99573227355399; x14.lo = 0.693147180559945; x14.up = 6.90775527898214; x15.lo = 0.693147180559945; x15.up = 6.90775527898214; x16.lo = 0.693147180559945; x16.up = 6.90775527898214; x17.up = 5.29831736654804; x18.up = 5.29831736654804; x19.up = 5.29831736654804; x20.up = 5.29831736654804; x21.up = 5.29831736654804; x22.up = 5.29831736654804; x23.up = 5.29831736654804; x24.up = 5.29831736654804; x25.up = 5.29831736654804; x26.up = 5.29831736654804; x27.up = 5.29831736654804; x28.up = 5.29831736654804; x29.up = 5.29831736654804; x30.up = 5.29831736654804; x31.up = 5.29831736654804; x32.up = 5.29831736654804; x33.up = 5.29831736654804; x34.up = 5.29831736654804; x35.up = 5.29831736654804; x36.up = 5.29831736654804; x37.up = 5.29831736654804; x38.up = 5.29831736654804; x39.up = 5.29831736654804; x40.up = 5.29831736654804; x41.up = 5.29831736654804; x42.up = 5.29831736654804; x43.up = 5.29831736654804; x44.up = 5.29831736654804; x45.up = 5.29831736654804; x46.up = 5.29831736654804; x47.up = 5.29831736654804; x48.up = 5.29831736654804; x54.fx = 0.587786664902119; x62.fx = 0.587786664902119; x70.fx = 0.587786664902119; x78.fx = 0.587786664902119; x81.up = 1.6094379124341; x82.up = 1.6094379124341; x83.up = 1.6094379124341; x84.up = 1.6094379124341; x85.up = 1.6094379124341; x86.up = 1.6094379124341; x87.up = 1.6094379124341; x88.up = 1.6094379124341; x89.up = 1.6094379124341; x90.up = 1.6094379124341; x91.up = 1.6094379124341; x92.up = 1.6094379124341; x93.up = 1.6094379124341; x94.up = 1.6094379124341; x95.up = 1.6094379124341; x96.up = 1.6094379124341; x98.lo = -2.30258509299405; x98.up = 6.90775527898214; x99.lo = -2.30258509299405; x99.up = 6.90775527898214; x100.lo = -2.30258509299405; x100.up = 6.90775527898214; x101.lo = -2.30258509299405; x101.up = 6.90775527898214; x102.lo = -2.30258509299405; x102.up = 6.90775527898214; x103.lo = -2.30258509299405; x103.up = 6.90775527898214; x104.lo = -2.30258509299405; x104.up = 6.90775527898214; x105.lo = -2.30258509299405; x105.up = 6.90775527898214; x106.lo = -6.90775527898214; x106.up = 2.99573227355399; x107.lo = -6.90775527898214; x107.up = 2.99573227355399; x108.lo = -6.90775527898214; x108.up = 2.99573227355399; x109.lo = -6.90775527898214; x109.up = 2.99573227355399; b117.fx = 0; x198.up = 1.6094379124341; x199.up = 1.6094379124341; x200.up = 1.6094379124341; x201.up = 1.6094379124341; x202.up = 1.6094379124341; x203.up = 1.6094379124341; x204.up = 1.6094379124341; x205.up = 1.6094379124341; x206.up = 1.6094379124341; x207.up = 1.6094379124341; x208.up = 1.6094379124341; x209.up = 1.6094379124341; x210.up = 1.6094379124341; x211.up = 1.6094379124341; x212.up = 1.6094379124341; x213.up = 1.6094379124341; x214.up = 1.6094379124341; x215.up = 1.6094379124341; x216.up = 1.6094379124341; x217.up = 1.6094379124341; x218.up = 1.6094379124341; x219.up = 1.6094379124341; x220.up = 1.6094379124341; x221.up = 1.6094379124341; x222.up = 1.6094379124341; x223.up = 1.6094379124341; x224.up = 1.6094379124341; x225.up = 1.6094379124341; x226.up = 1.6094379124341; x227.up = 1.6094379124341; x228.up = 1.6094379124341; x229.up = 1.6094379124341; x231.fx = -2.25129179860649; x233.fx = -2.25129179860649; x235.fx = -2.25129179860649; x237.fx = -2.25129179860649; x247.fx = 0; x248.fx = 0; x254.fx = 0; x255.fx = 0; x266.lo = 0.1; x266.up = 1; x267.lo = 0.1; x267.up = 1; x268.lo = 0.1; x268.up = 1; x269.fx = 0.95; x270.lo = 0.1; x270.up = 1; x271.lo = 0.1; x271.up = 1; x272.fx = 0.95; x273.lo = 0.1; x273.up = 1; x274.lo = 0.1; x274.up = 1; x275.fx = 0.95; x276.lo = 0.1; x276.up = 1; x277.lo = 0.1; x277.up = 1; x278.lo = 0.1; x278.up = 1; x279.fx = 0.95; x280.lo = 10; x280.up = 54.5; x281.lo = 10; x281.up = 54.5; x282.lo = 10; x282.up = 54.5; x283.lo = 10; x283.up = 54.5; x284.lo = 10; x284.up = 250; x285.lo = 10; x285.up = 250; x286.lo = 10; x286.up = 250; x287.lo = 10; x287.up = 250; x288.lo = 0.1; x288.up = 10; x289.lo = 0.1; x289.up = 10; x290.lo = 0.5; x290.up = 10; x291.lo = 0.5; x291.up = 10; x292.lo = 0.5; x292.up = 6; x293.lo = 0.5; x293.up = 6; x294.lo = 0.1; x294.up = 4; x295.lo = 0.1; x295.up = 4; x296.lo = 0.1; x296.up = 4; x297.lo = 0.1; x297.up = 4; * set non-default levels x1.l = 2.99573227355399; x2.l = 2.99573227355399; x3.l = 2.94443897916644; x4.l = 2.94443897916644; x6.l = 1.9677597942808; x7.l = 1.27461261372086; x8.l = -1.1298234508907; x10.l = 2.0433602879393; x17.l = 2.94443897916644; x18.l = 2.94443897916644; x19.l = 2.94443897916644; x20.l = 2.94443897916644; x21.l = 2.94443897916644; x22.l = 2.94443897916644; x23.l = 2.94443897916644; x24.l = 2.94443897916644; x25.l = 2.94443897916644; x26.l = 2.94443897916644; x27.l = 2.94443897916644; x28.l = 2.94443897916644; x29.l = 2.94443897916644; x30.l = 2.94443897916644; x31.l = 2.94443897916644; x32.l = 2.94443897916644; x33.l = 2.61614353244073; x34.l = 2.61614353244073; x35.l = 2.61614353244073; x36.l = 2.61614353244073; x37.l = 2.61614353244073; x38.l = 2.61614353244073; x39.l = 2.61614353244073; x40.l = 2.61614353244073; x41.l = 2.94443897916644; x42.l = 2.94443897916644; x43.l = 2.94443897916644; x44.l = 2.94443897916644; x45.l = 2.94443897916644; x46.l = 2.94443897916644; x47.l = 2.94443897916644; x48.l = 2.94443897916644; x49.l = 3.17756893714648; x50.l = 0.233622804898907; x51.l = 0.399415336353673; x52.l = 0.577807612471274; x53.l = 0.0827635536142284; x55.l = -1.07858898697236; x56.l = -0.604447984103336; x57.l = 3.17756893714648; x58.l = 0.591132698406824; x61.l = 0.516209904652203; x63.l = -1.1469821150246; x64.l = -0.689448619982603; x65.l = 3.17756893714648; x66.l = 0.647103242058539; x69.l = 0.917954032114244; x71.l = -1.01757906523769; x72.l = -0.603587003016137; x73.l = 3.17756893714648; x74.l = 0.259570495557779; x75.l = 0.538673267899503; x76.l = 0.594337876584314; x77.l = 0.165264958927998; x79.l = -0.938029907934514; x80.l = -0.456539109459263; x81.l = 1.38629436111989; x96.l = 1.38629436111989; x98.l = 3.68887945411394; x99.l = 4.38202663467388; x100.l = 2.0433602879393; x101.l = 2.73650746849925; x102.l = 1.9677597942808; x103.l = 1.9677597942808; x104.l = 0.949618090789135; x106.l = -1.15316440313985; x107.l = -1.15316440313985; x108.l = -0.824868956414142; x109.l = -1.15316440313985; x198.l = -0.862636840383206; x199.l = -0.862636840383206; x200.l = -2.2489312015031; x201.l = -2.2489312015031; x202.l = -1.55578402094315; x203.l = -1.63138451460165; x204.l = -2.32453169516159; x205.l = -3.09889665499776; x206.l = -0.752600105692548; x207.l = -0.752600105692548; x210.l = -0.0594529251326021; x211.l = -2.17980108705855; x212.l = -2.8729482676185; x213.l = -3.39972974065073; x214.l = 0.379588741113263; x215.l = 0.379588741113263; x218.l = 1.07273592167321; x219.l = -1.04921352161972; x220.l = -1.74236070217966; x221.l = -2.76785883450285; x222.l = -0.207931510667194; x223.l = -0.207931510667194; x224.l = -1.59422587178708; x225.l = -1.59422587178708; x226.l = -0.901078691227139; x227.l = -0.976679184885637; x228.l = -1.66982636544558; x229.l = -2.68796806893725; x230.l = -1.55578402094315; x232.l = -0.0594529251326021; x234.l = 1.07273592167321; x236.l = -0.901078691227139; x238.l = 0.422047741265856; x239.l = 0.105511935316464; x240.l = 0.105511935316464; x241.l = 0.211023870632928; x242.l = 0.0978292472354046; x243.l = 0.0978292472354046; x244.l = 0.0450989346367396; x245.l = 0.471139945124032; x246.l = 0.942279890248065; x249.l = 0.0565320091501422; x250.l = 0.0565320091501422; x251.l = 0.033382290617452; x252.l = 1.46168333554586; x253.l = 2.92336667109171; x256.l = 0.175106537920172; x257.l = 0.175106537920172; x258.l = 0.0627963182070535; x259.l = 0.812262666134973; x260.l = 0.203065666533743; x261.l = 0.203065666533743; x262.l = 0.406131333067486; x263.l = 0.188279754672; x264.l = 0.188279754672; x265.l = 0.0680190089875055; x266.l = 0.903778326897858; x267.l = 0.975106465816068; x268.l = 0.882989317955773; x270.l = 0.998315513250229; x271.l = 0.931004925149313; x273.l = 0.998315513250229; x274.l = 0.901706690780938; x276.l = 0.903778326897858; x277.l = 0.975106465816068; x278.l = 0.917593932953673; x280.l = 50; x281.l = 50; x282.l = 50; x283.l = 50; x284.l = 200; x285.l = 200; x286.l = 200; x287.l = 200; x288.l = 1.25; x289.l = 1.25; x290.l = 1.5; x291.l = 1.5; x292.l = 3; x293.l = 3; x294.l = 1; x295.l = 1; x296.l = 1; x297.l = 1; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91