MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance csched2
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -236436.67830000 (ANTIGONE) -166101.99660000 (BARON) -58872815.87000000 (COUENNE) -835609.40670000 (LINDO) -1019987.80200000 (SCIP) |
Referencesⓘ | And, Vipul J and Grossmann, I E, Cyclic Scheduling of Continuous Parallel Units with Decaying Performance, American Institute of Chemical Engineers Journal, 44:7, 1998, 1623-1636. |
Sourceⓘ | MacMINLP model c-sched.mod with c-sched2.dat, GAMS Model Library model csched |
Applicationⓘ | Cyclic Scheduling of Continuous Parallel Units |
Added to libraryⓘ | 01 May 2001 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 401 |
#Binary Variablesⓘ | 308 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 58 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 138 |
#Linear Constraintsⓘ | 137 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 1 |
Operands in Gen. Nonlin. Functionsⓘ | div exp mul |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 958 |
#Nonlinear Nonzeros in Jacobianⓘ | 58 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 114 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 56 |
#Blocks in Hessian of Lagrangianⓘ | 29 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-02 |
Maximal coefficientⓘ | 5.2668e+05 |
Infeasibility of initial pointⓘ | 6e+04 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 138 92 7 39 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 401 93 308 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 958 900 58 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103 ,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116 ,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129 ,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142 ,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154,b155 ,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167,b168 ,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180,b181 ,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193,b194 ,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206,b207 ,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218,b219,b220 ,b221,b222,b223,b224,b225,b226,b227,b228,b229,b230,b231,b232,b233 ,b234,b235,b236,b237,b238,b239,b240,b241,b242,b243,b244,b245,b246 ,b247,b248,b249,b250,b251,b252,b253,b254,b255,b256,b257,b258,b259 ,b260,b261,b262,b263,b264,b265,b266,b267,b268,b269,b270,b271,b272 ,b273,b274,b275,b276,b277,b278,b279,b280,b281,b282,b283,b284,b285 ,b286,b287,b288,b289,b290,b291,b292,b293,b294,b295,b296,b297,b298 ,b299,b300,b301,b302,b303,b304,b305,b306,b307,b308,b309,b310,b311 ,b312,b313,b314,b315,b316,b317,b318,b319,b320,b321,b322,b323,b324 ,b325,b326,b327,b328,b329,b330,b331,b332,b333,b334,b335,b336,b337 ,b338,b339,b340,b341,b342,b343,b344,b345,b346,b347,b348,b349,b350 ,b351,b352,b353,b354,b355,b356,b357,b358,b359,b360,b361,b362,b363 ,b364,b365,b366,b367,b368,b369,b370,b371,b372,b373,b374,b375,b376 ,b377,b378,b379,b380,b381,b382,b383,b384,b385,b386,b387,b388,b389 ,b390,b391,b392,b393,b394,b395,b396,b397,b398,b399,b400,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x57,x58,x59,x60,x61,x62 ,x63,x64,x65,x66,x67,x68,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79 ,x80,x81,x82,x83,x84,x85,x86,x87,x88,x89,x90,x91,x92; Binary Variables b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103,b104,b105 ,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116,b117,b118 ,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129,b130,b131 ,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142,b143,b144 ,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154,b155,b156,b157 ,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167,b168,b169,b170 ,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180,b181,b182,b183 ,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193,b194,b195,b196 ,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206,b207,b208,b209 ,b210,b211,b212,b213,b214,b215,b216,b217,b218,b219,b220,b221,b222 ,b223,b224,b225,b226,b227,b228,b229,b230,b231,b232,b233,b234,b235 ,b236,b237,b238,b239,b240,b241,b242,b243,b244,b245,b246,b247,b248 ,b249,b250,b251,b252,b253,b254,b255,b256,b257,b258,b259,b260,b261 ,b262,b263,b264,b265,b266,b267,b268,b269,b270,b271,b272,b273,b274 ,b275,b276,b277,b278,b279,b280,b281,b282,b283,b284,b285,b286,b287 ,b288,b289,b290,b291,b292,b293,b294,b295,b296,b297,b298,b299,b300 ,b301,b302,b303,b304,b305,b306,b307,b308,b309,b310,b311,b312,b313 ,b314,b315,b316,b317,b318,b319,b320,b321,b322,b323,b324,b325,b326 ,b327,b328,b329,b330,b331,b332,b333,b334,b335,b336,b337,b338,b339 ,b340,b341,b342,b343,b344,b345,b346,b347,b348,b349,b350,b351,b352 ,b353,b354,b355,b356,b357,b358,b359,b360,b361,b362,b363,b364,b365 ,b366,b367,b368,b369,b370,b371,b372,b373,b374,b375,b376,b377,b378 ,b379,b380,b381,b382,b383,b384,b385,b386,b387,b388,b389,b390,b391 ,b392,b393,b394,b395,b396,b397,b398,b399,b400; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138; e1.. (-x92*objvar) - (479700*(1 - exp(-0.1*x1/x29))*x29 + 31980*x1 - 100*x29 + 252000*(1 - exp(-0.2*x2/x30))*x30 + 22680*x2 - 90*x30 + 423500*(1 - exp(- 0.1*x3/x31))*x31 + 25410*x3 - 80*x31 + 157440*(1 - exp(-0.2*x4/x32))*x32 + 19680*x4 - 75*x32 + 172108.695652174*(1 - exp(-0.23*x5/x33))*x33 + 40950*x5 - 90*x33 + 33970.5882352941*(1 - exp(-0.34*x6/x34))*x34 + 8580*x6 - 93*x34 + 130200*(1 - exp(-0.2*x7/x35))*x35 + 13440*x7 - 78*x35 + 200640 *(1 - exp(-0.2*x8/x36))*x36 + 26334*x8 - 80*x36 + 526680*(1 - exp(-0.1*x9/ x37))*x37 + 26334*x9 - 85*x37 + 212850*(1 - exp(-0.2*x10/x38))*x38 + 29670 *x10 - 75*x38 + 141360*(1 - exp(-0.25*x11/x39))*x39 + 28500*x11 - 90*x39 + 152937.931034483*(1 - exp(-0.29*x12/x40))*x40 + 49104*x12 - 94*x40 + 76444.4444444444*(1 - exp(-0.27*x13/x41))*x41 + 13932*x13 - 78*x41 + 76840 *(1 - exp(-0.3*x14/x42))*x42 + 11526*x14 - 70*x42 + 102300*(1 - exp(-0.3* x15/x43))*x43 + 18810*x15 - 90*x43 + 170800*(1 - exp(-0.2*x16/x44))*x44 + 17568*x16 - 90*x44 + 115200*(1 - exp(-0.3*x17/x45))*x45 + 20160*x17 - 90* x45 + 176000*(1 - exp(-0.27*x18/x46))*x46 + 30360*x18 - 85*x46 + 126357.142857143*(1 - exp(-0.28*x19/x47))*x47 + 36600*x19 - 93*x47 + 45931.0344827586*(1 - exp(-0.29*x20/x48))*x48 + 9000*x20 - 92*x48 + 123318 *(1 - exp(-0.25*x21/x49))*x49 + 17901*x21 - 75*x49 + 223200*(1 - exp(-0.2* x22/x50))*x50 + 28800*x22 - 80*x50 + 225000*(1 - exp(-0.2*x23/x51))*x51 + 23750*x23 - 90*x51 + 240800*(1 - exp(-0.15*x24/x52))*x52 + 21672*x24 - 85* x52 + 115920*(1 - exp(-0.25*x25/x53))*x53 + 19320*x25 - 80*x53 + 133241.379310345*(1 - exp(-0.29*x26/x54))*x54 + 42780*x26 - 92*x54 + 90763.6363636364*(1 - exp(-0.22*x27/x55))*x55 + 13312*x27 - 85*x55 + 78857.1428571429*(1 - exp(-0.28*x28/x56))*x56 + 11730*x28 - 72*x56) =E= 0; e2.. - 1300*x1 - 1100*x8 - 900*x15 - 1200*x22 + x57 + 300*x92 =E= 0; e3.. - 1200*x2 - 1050*x9 - 800*x16 - 1000*x23 + x58 + 400*x92 =E= 0; e4.. - 1100*x3 - 1000*x10 - 800*x17 - 800*x24 + x59 + 300*x92 =E= 0; e5.. - 800*x4 - 1000*x11 - 1200*x18 - 700*x25 + x60 + 500*x92 =E= 0; e6.. - 1300*x5 - 1200*x12 - 1000*x19 - 1200*x26 + x61 + 500*x92 =E= 0; e7.. - 300*x6 - 400*x13 - 300*x20 - 400*x27 + x62 + 100*x92 =E= 0; e8.. - 700*x7 - 600*x14 - 850*x21 - 600*x28 + x63 + 600*x92 =E= 0; e9.. x57 - 300*x92 =L= 0; e10.. x58 - 300*x92 =L= 0; e11.. x59 - 300*x92 =L= 0; e12.. x60 - 300*x92 =L= 0; e13.. x61 - 300*x92 =L= 0; e14.. x62 - 300*x92 =L= 0; e15.. x63 - 300*x92 =L= 0; e16.. x29 - 0.01*b93 - b94 - 2*b95 - 3*b96 - 4*b97 - 5*b98 - 6*b99 - 7*b100 - 8*b101 - 9*b102 - 10*b103 =E= 0; e17.. x30 - 0.01*b104 - b105 - 2*b106 - 3*b107 - 4*b108 - 5*b109 - 6*b110 - 7*b111 - 8*b112 - 9*b113 - 10*b114 =E= 0; e18.. x31 - 0.01*b115 - b116 - 2*b117 - 3*b118 - 4*b119 - 5*b120 - 6*b121 - 7*b122 - 8*b123 - 9*b124 - 10*b125 =E= 0; e19.. x32 - 0.01*b126 - b127 - 2*b128 - 3*b129 - 4*b130 - 5*b131 - 6*b132 - 7*b133 - 8*b134 - 9*b135 - 10*b136 =E= 0; e20.. x33 - 0.01*b137 - b138 - 2*b139 - 3*b140 - 4*b141 - 5*b142 - 6*b143 - 7*b144 - 8*b145 - 9*b146 - 10*b147 =E= 0; e21.. x34 - 0.01*b148 - b149 - 2*b150 - 3*b151 - 4*b152 - 5*b153 - 6*b154 - 7*b155 - 8*b156 - 9*b157 - 10*b158 =E= 0; e22.. x35 - 0.01*b159 - b160 - 2*b161 - 3*b162 - 4*b163 - 5*b164 - 6*b165 - 7*b166 - 8*b167 - 9*b168 - 10*b169 =E= 0; e23.. x36 - 0.01*b170 - b171 - 2*b172 - 3*b173 - 4*b174 - 5*b175 - 6*b176 - 7*b177 - 8*b178 - 9*b179 - 10*b180 =E= 0; e24.. x37 - 0.01*b181 - b182 - 2*b183 - 3*b184 - 4*b185 - 5*b186 - 6*b187 - 7*b188 - 8*b189 - 9*b190 - 10*b191 =E= 0; e25.. x38 - 0.01*b192 - b193 - 2*b194 - 3*b195 - 4*b196 - 5*b197 - 6*b198 - 7*b199 - 8*b200 - 9*b201 - 10*b202 =E= 0; e26.. x39 - 0.01*b203 - b204 - 2*b205 - 3*b206 - 4*b207 - 5*b208 - 6*b209 - 7*b210 - 8*b211 - 9*b212 - 10*b213 =E= 0; e27.. x40 - 0.01*b214 - b215 - 2*b216 - 3*b217 - 4*b218 - 5*b219 - 6*b220 - 7*b221 - 8*b222 - 9*b223 - 10*b224 =E= 0; e28.. x41 - 0.01*b225 - b226 - 2*b227 - 3*b228 - 4*b229 - 5*b230 - 6*b231 - 7*b232 - 8*b233 - 9*b234 - 10*b235 =E= 0; e29.. x42 - 0.01*b236 - b237 - 2*b238 - 3*b239 - 4*b240 - 5*b241 - 6*b242 - 7*b243 - 8*b244 - 9*b245 - 10*b246 =E= 0; e30.. x43 - 0.01*b247 - b248 - 2*b249 - 3*b250 - 4*b251 - 5*b252 - 6*b253 - 7*b254 - 8*b255 - 9*b256 - 10*b257 =E= 0; e31.. x44 - 0.01*b258 - b259 - 2*b260 - 3*b261 - 4*b262 - 5*b263 - 6*b264 - 7*b265 - 8*b266 - 9*b267 - 10*b268 =E= 0; e32.. x45 - 0.01*b269 - b270 - 2*b271 - 3*b272 - 4*b273 - 5*b274 - 6*b275 - 7*b276 - 8*b277 - 9*b278 - 10*b279 =E= 0; e33.. x46 - 0.01*b280 - b281 - 2*b282 - 3*b283 - 4*b284 - 5*b285 - 6*b286 - 7*b287 - 8*b288 - 9*b289 - 10*b290 =E= 0; e34.. x47 - 0.01*b291 - b292 - 2*b293 - 3*b294 - 4*b295 - 5*b296 - 6*b297 - 7*b298 - 8*b299 - 9*b300 - 10*b301 =E= 0; e35.. x48 - 0.01*b302 - b303 - 2*b304 - 3*b305 - 4*b306 - 5*b307 - 6*b308 - 7*b309 - 8*b310 - 9*b311 - 10*b312 =E= 0; e36.. x49 - 0.01*b313 - b314 - 2*b315 - 3*b316 - 4*b317 - 5*b318 - 6*b319 - 7*b320 - 8*b321 - 9*b322 - 10*b323 =E= 0; e37.. x50 - 0.01*b324 - b325 - 2*b326 - 3*b327 - 4*b328 - 5*b329 - 6*b330 - 7*b331 - 8*b332 - 9*b333 - 10*b334 =E= 0; e38.. x51 - 0.01*b335 - b336 - 2*b337 - 3*b338 - 4*b339 - 5*b340 - 6*b341 - 7*b342 - 8*b343 - 9*b344 - 10*b345 =E= 0; e39.. x52 - 0.01*b346 - b347 - 2*b348 - 3*b349 - 4*b350 - 5*b351 - 6*b352 - 7*b353 - 8*b354 - 9*b355 - 10*b356 =E= 0; e40.. x53 - 0.01*b357 - b358 - 2*b359 - 3*b360 - 4*b361 - 5*b362 - 6*b363 - 7*b364 - 8*b365 - 9*b366 - 10*b367 =E= 0; e41.. x54 - 0.01*b368 - b369 - 2*b370 - 3*b371 - 4*b372 - 5*b373 - 6*b374 - 7*b375 - 8*b376 - 9*b377 - 10*b378 =E= 0; e42.. x55 - 0.01*b379 - b380 - 2*b381 - 3*b382 - 4*b383 - 5*b384 - 6*b385 - 7*b386 - 8*b387 - 9*b388 - 10*b389 =E= 0; e43.. x56 - 0.01*b390 - b391 - 2*b392 - 3*b393 - 4*b394 - 5*b395 - 6*b396 - 7*b397 - 8*b398 - 9*b399 - 10*b400 =E= 0; e44.. - b93 - b94 - b95 - b96 - b97 - b98 - b99 - b100 - b101 - b102 - b103 =E= -1; e45.. - b104 - b105 - b106 - b107 - b108 - b109 - b110 - b111 - b112 - b113 - b114 =E= -1; e46.. - b115 - b116 - b117 - b118 - b119 - b120 - b121 - b122 - b123 - b124 - b125 =E= -1; e47.. - b126 - b127 - b128 - b129 - b130 - b131 - b132 - b133 - b134 - b135 - b136 =E= -1; e48.. - b137 - b138 - b139 - b140 - b141 - b142 - b143 - b144 - b145 - b146 - b147 =E= -1; e49.. - b148 - b149 - b150 - b151 - b152 - b153 - b154 - b155 - b156 - b157 - b158 =E= -1; e50.. - b159 - b160 - b161 - b162 - b163 - b164 - b165 - b166 - b167 - b168 - b169 =E= -1; e51.. - b170 - b171 - b172 - b173 - b174 - b175 - b176 - b177 - b178 - b179 - b180 =E= -1; e52.. - b181 - b182 - b183 - b184 - b185 - b186 - b187 - b188 - b189 - b190 - b191 =E= -1; e53.. - b192 - b193 - b194 - b195 - b196 - b197 - b198 - b199 - b200 - b201 - b202 =E= -1; e54.. - b203 - b204 - b205 - b206 - b207 - b208 - b209 - b210 - b211 - b212 - b213 =E= -1; e55.. - b214 - b215 - b216 - b217 - b218 - b219 - b220 - b221 - b222 - b223 - b224 =E= -1; e56.. - b225 - b226 - b227 - b228 - b229 - b230 - b231 - b232 - b233 - b234 - b235 =E= -1; e57.. - b236 - b237 - b238 - b239 - b240 - b241 - b242 - b243 - b244 - b245 - b246 =E= -1; e58.. - b247 - b248 - b249 - b250 - b251 - b252 - b253 - b254 - b255 - b256 - b257 =E= -1; e59.. - b258 - b259 - b260 - b261 - b262 - b263 - b264 - b265 - b266 - b267 - b268 =E= -1; e60.. - b269 - b270 - b271 - b272 - b273 - b274 - b275 - b276 - b277 - b278 - b279 =E= -1; e61.. - b280 - b281 - b282 - b283 - b284 - b285 - b286 - b287 - b288 - b289 - b290 =E= -1; e62.. - b291 - b292 - b293 - b294 - b295 - b296 - b297 - b298 - b299 - b300 - b301 =E= -1; e63.. - b302 - b303 - b304 - b305 - b306 - b307 - b308 - b309 - b310 - b311 - b312 =E= -1; e64.. - b313 - b314 - b315 - b316 - b317 - b318 - b319 - b320 - b321 - b322 - b323 =E= -1; e65.. - b324 - b325 - b326 - b327 - b328 - b329 - b330 - b331 - b332 - b333 - b334 =E= -1; e66.. - b335 - b336 - b337 - b338 - b339 - b340 - b341 - b342 - b343 - b344 - b345 =E= -1; e67.. - b346 - b347 - b348 - b349 - b350 - b351 - b352 - b353 - b354 - b355 - b356 =E= -1; e68.. - b357 - b358 - b359 - b360 - b361 - b362 - b363 - b364 - b365 - b366 - b367 =E= -1; e69.. - b368 - b369 - b370 - b371 - b372 - b373 - b374 - b375 - b376 - b377 - b378 =E= -1; e70.. - b379 - b380 - b381 - b382 - b383 - b384 - b385 - b386 - b387 - b388 - b389 =E= -1; e71.. - b390 - b391 - b392 - b393 - b394 - b395 - b396 - b397 - b398 - b399 - b400 =E= -1; e72.. - x1 - 2*x29 + x64 =E= 0; e73.. - x2 - 3*x30 + x65 =E= 0; e74.. - x3 - 3*x31 + x66 =E= 0; e75.. - x4 - 3*x32 + x67 =E= 0; e76.. - x5 - x33 + x68 =E= 0; e77.. - x6 - 2*x34 + x69 =E= 0; e78.. - x7 - 3*x35 + x70 =E= 0; e79.. - x8 - 3*x36 + x71 =E= 0; e80.. - x9 - x37 + x72 =E= 0; e81.. - x10 - 2*x38 + x73 =E= 0; e82.. - x11 - 2*x39 + x74 =E= 0; e83.. - x12 - 2*x40 + x75 =E= 0; e84.. - x13 - x41 + x76 =E= 0; e85.. - x14 - x42 + x77 =E= 0; e86.. - x15 - x43 + x78 =E= 0; e87.. - x16 - 3*x44 + x79 =E= 0; e88.. - x17 - x45 + x80 =E= 0; e89.. - x18 - x46 + x81 =E= 0; e90.. - x19 - 2*x47 + x82 =E= 0; e91.. - x20 - x48 + x83 =E= 0; e92.. - x21 - 2*x49 + x84 =E= 0; e93.. - x22 - 2*x50 + x85 =E= 0; e94.. - x23 - x51 + x86 =E= 0; e95.. - x24 - 3*x52 + x87 =E= 0; e96.. - x25 - 2*x53 + x88 =E= 0; e97.. - x26 - 2*x54 + x89 =E= 0; e98.. - x27 - x55 + x90 =E= 0; e99.. - x28 - x56 + x91 =E= 0; e100.. x64 + x65 + x66 + x67 + x68 + x69 + x70 - x92 =L= 0; e101.. x71 + x72 + x73 + x74 + x75 + x76 + x77 - x92 =L= 0; e102.. x78 + x79 + x80 + x81 + x82 + x83 + x84 - x92 =L= 0; e103.. x85 + x86 + x87 + x88 + x89 + x90 + x91 - x92 =L= 0; e104.. x1 + 100*b93 =L= 100; e105.. x2 + 100*b104 =L= 100; e106.. x3 + 100*b115 =L= 100; e107.. x4 + 100*b126 =L= 100; e108.. x5 + 100*b137 =L= 100; e109.. x6 + 100*b148 =L= 100; e110.. x7 + 100*b159 =L= 100; e111.. x8 + 100*b170 =L= 100; e112.. x9 + 100*b181 =L= 100; e113.. x10 + 100*b192 =L= 100; e114.. x11 + 100*b203 =L= 100; e115.. x12 + 100*b214 =L= 100; e116.. x13 + 100*b225 =L= 100; e117.. x14 + 100*b236 =L= 100; e118.. x15 + 100*b247 =L= 100; e119.. x16 + 100*b258 =L= 100; e120.. x17 + 100*b269 =L= 100; e121.. x18 + 100*b280 =L= 100; e122.. x19 + 100*b291 =L= 100; e123.. x20 + 100*b302 =L= 100; e124.. x21 + 100*b313 =L= 100; e125.. x22 + 100*b324 =L= 100; e126.. x23 + 100*b335 =L= 100; e127.. x24 + 100*b346 =L= 100; e128.. x25 + 100*b357 =L= 100; e129.. x26 + 100*b368 =L= 100; e130.. x27 + 100*b379 =L= 100; e131.. x28 + 100*b390 =L= 100; e132.. x29 + x36 + x43 + x50 =G= 1; e133.. x30 + x37 + x44 + x51 =G= 1; e134.. x31 + x38 + x45 + x52 =G= 1; e135.. x32 + x39 + x46 + x53 =G= 1; e136.. x33 + x40 + x47 + x54 =G= 1; e137.. x34 + x41 + x48 + x55 =G= 1; e138.. x35 + x42 + x49 + x56 =G= 1; * set non-default bounds x29.lo = 0.01; x29.up = 10; x30.lo = 0.01; x30.up = 10; x31.lo = 0.01; x31.up = 10; x32.lo = 0.01; x32.up = 10; x33.lo = 0.01; x33.up = 10; x34.lo = 0.01; x34.up = 10; x35.lo = 0.01; x35.up = 10; x36.lo = 0.01; x36.up = 10; x37.lo = 0.01; x37.up = 10; x38.lo = 0.01; x38.up = 10; x39.lo = 0.01; x39.up = 10; x40.lo = 0.01; x40.up = 10; x41.lo = 0.01; x41.up = 10; x42.lo = 0.01; x42.up = 10; x43.lo = 0.01; x43.up = 10; x44.lo = 0.01; x44.up = 10; x45.lo = 0.01; x45.up = 10; x46.lo = 0.01; x46.up = 10; x47.lo = 0.01; x47.up = 10; x48.lo = 0.01; x48.up = 10; x49.lo = 0.01; x49.up = 10; x50.lo = 0.01; x50.up = 10; x51.lo = 0.01; x51.up = 10; x52.lo = 0.01; x52.up = 10; x53.lo = 0.01; x53.up = 10; x54.lo = 0.01; x54.up = 10; x55.lo = 0.01; x55.up = 10; x56.lo = 0.01; x56.up = 10; * set non-default levels x29.l = 1; x30.l = 1; x31.l = 1; x32.l = 1; x33.l = 1; x34.l = 1; x35.l = 1; x36.l = 1; x37.l = 1; x38.l = 1; x39.l = 1; x40.l = 1; x41.l = 1; x42.l = 1; x43.l = 1; x44.l = 1; x45.l = 1; x46.l = 1; x47.l = 1; x48.l = 1; x49.l = 1; x50.l = 1; x51.l = 1; x52.l = 1; x53.l = 1; x54.l = 1; x55.l = 1; x56.l = 1; x92.l = 100; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91