MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance cvxnonsep_normcon40
convex MINLP test problem with non-separable 2-norm constraint see also problem description (PDF).
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -89.40000000 (ALPHAECP) -32.62967116 (ANTIGONE) -32.62966975 (BARON) -32.62966972 (BONMIN) -32.62984843 (COUENNE) -32.62966972 (LINDO) -32.62967099 (SCIP) -32.63054933 (SHOT) |
Referencesⓘ | Kronqvist, Jan, Lundell, Andreas, and Westerlund, Tapio, Reformulations for utilizing separability when solving convex MINLP problems, submitted, 2017. |
Applicationⓘ | Test Problem |
Added to libraryⓘ | 11 Sep 2017 |
Problem typeⓘ | MINLP |
#Variablesⓘ | 40 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 20 |
#Nonlinear Variablesⓘ | 40 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 20 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 40 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 1 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 1 |
Operands in Gen. Nonlin. Functionsⓘ | sqr sqrt |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 40 |
#Nonlinear Nonzeros in Jacobianⓘ | 40 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 1600 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 40 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 40 |
Maximal blocksize in Hessian of Lagrangianⓘ | 40 |
Average blocksize in Hessian of Lagrangianⓘ | 40.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-04 |
Maximal coefficientⓘ | 9.8000e-01 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 2 1 0 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 41 21 0 20 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 81 41 40 0 * * Solve m using MINLP minimizing objvar; Variables i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,i16,i17,i18,i19 ,i20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,objvar; Positive Variables x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40; Integer Variables i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,i16,i17 ,i18,i19,i20; Equations e1,e2; e1.. sqrt(0.0001 + sqr(i1) + sqr(i2) + sqr(i3) + sqr(i4) + sqr(i5) + sqr(i6) + sqr(i7) + sqr(i8) + sqr(i9) + sqr(i10) + sqr(i11) + sqr(i12) + sqr(i13) + sqr(i14) + sqr(i15) + sqr(i16) + sqr(i17) + sqr(i18) + sqr(i19) + sqr(i20) + sqr(x21) + sqr(x22) + sqr(x23) + sqr(x24) + sqr(x25) + sqr(x26) + sqr( x27) + sqr(x28) + sqr(x29) + sqr(x30) + sqr(x31) + sqr(x32) + sqr(x33) + sqr(x34) + sqr(x35) + sqr(x36) + sqr(x37) + sqr(x38) + sqr(x39) + sqr(x40) ) =L= 10; e2.. - 0.64*i1 - 0.38*i2 - 0.19*i3 - 0.43*i4 - 0.48*i5 - 0.12*i6 - 0.59*i7 - 0.23*i8 - 0.38*i9 - 0.85*i10 - 0.25*i11 - 0.29*i12 - 0.62*i13 - 0.82*i14 - 0.27*i15 - 0.98*i16 - 0.73*i17 - 0.34*i18 - 0.58*i19 - 0.11*i20 - 0.91*x21 - 0.88*x22 - 0.82*x23 - 0.26*x24 - 0.02*x25 - 0.43*x26 - 0.31*x27 - 0.59*x28 - 0.16*x29 - 0.18*x30 - 0.42*x31 - 0.09*x32 - 0.6*x33 - 0.47*x34 - 0.7*x35 - 0.7*x36 - 0.64*x37 - 0.03*x38 - 0.07*x39 - 0.32*x40 - objvar =E= 0; * set non-default bounds i1.up = 5; i2.up = 5; i3.up = 5; i4.up = 5; i5.up = 5; i6.up = 5; i7.up = 5; i8.up = 5; i9.up = 5; i10.up = 5; i11.up = 5; i12.up = 5; i13.up = 5; i14.up = 5; i15.up = 5; i16.up = 5; i17.up = 5; i18.up = 5; i19.up = 5; i20.up = 5; x21.up = 5; x22.up = 5; x23.up = 5; x24.up = 5; x25.up = 5; x26.up = 5; x27.up = 5; x28.up = 5; x29.up = 5; x30.up = 5; x31.up = 5; x32.up = 5; x33.up = 5; x34.up = 5; x35.up = 5; x36.up = 5; x37.up = 5; x38.up = 5; x39.up = 5; x40.up = 5; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91