MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance demo7

Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
-1589042.38600000 p1 ( gdx sol )
(infeas: 2e-10)
Other points (infeas > 1e-08)  
Dual Bounds
-1589042.38800000 (BARON)
-1589042.38600000 (COUENNE)
-1589042.38600000 (LINDO)
-1589042.38600000 (SCIP)
References Kutcher, Gary P, Meeraus, Alexander, and O'Mara, Gerald T, Agriculture Sector and Policy Models, The World Bank, 1988.
Source GAMS Model Library model demo7
Application Agriculture
Added to library 31 Jul 2001
Problem type QCQP
#Variables 70
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 6
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type quadratic
Objective curvature convex
#Nonzeros in Objective 13
#Nonlinear Nonzeros in Objective 6
#Constraints 57
#Linear Constraints 56
#Quadratic Constraints 1
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 281
#Nonlinear Nonzeros in Jacobian 6
#Nonzeros in (Upper-Left) Hessian of Lagrangian 6
#Nonzeros in Diagonal of Hessian of Lagrangian 6
#Blocks in Hessian of Lagrangian 6
Minimal blocksize in Hessian of Lagrangian 1
Maximal blocksize in Hessian of Lagrangian 1
Average blocksize in Hessian of Lagrangian 1.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 6.6667e-03
Maximal coefficient 7.0000e+02
Infeasibility of initial point 500
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         58       30        2       26        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         71       71        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        295      283       12        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
          ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,objvar,x69
          ,x70,x71;

Positive Variables  x1,x2,x3,x4,x5,x6,x7,x15,x16,x17,x18,x19,x20,x21,x22,x23
          ,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,x37,x38,x39,x40
          ,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53,x54,x55,x62,x63
          ,x64,x65,x66,x67;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58;


e1..    x1 + x2 + x3 + x4 =L= 4000;

e2..    x1 + x2 + x3 + x4 =L= 4000;

e3..    x1 + 0.5*x2 + x3 + x4 + 0.5*x5 =L= 4000;

e4..    x1 + x3 + x4 + x5 =L= 4000;

e5..    x1 + 0.25*x4 + x5 + 0.25*x6 =L= 4000;

e6..    x5 + x6 =L= 4000;

e7..    x5 + x6 + 0.75*x7 =L= 4000;

e8..    x5 + x6 + x7 =L= 4000;

e9..    x5 + x6 + x7 =L= 4000;

e10..    x5 + 0.5*x6 + x7 =L= 4000;

e11..    0.5*x1 + 0.25*x2 + 0.25*x3 + 0.5*x4 + 0.75*x5 + 0.75*x7 =L= 4000;

e12..    x1 + x2 + x3 + x4 =L= 4000;

e13..    1.72*x1 + 4.5*x2 + 0.75*x3 + 5.16*x4 - x15 - x27 + 2*x39 + 2*x40 =L= 0
      ;

e14..    0.5*x1 + x2 + 0.75*x3 + 5*x4 - x16 - x28 + 2*x39 + 2*x40 =L= 0;

e15..    x1 + 8*x2 + 0.75*x3 + 5*x4 + 5*x5 - x17 - x29 + 2*x39 + 2*x40 =L= 0;

e16..    x1 + 16*x3 + 19.58*x4 + 5*x5 - x18 - x30 + 2*x39 + 2*x40 =L= 0;

e17..    17.16*x1 + 2.42*x4 + 9*x5 + 4.3*x6 - x19 - x31 + 2*x39 + 2*x40 =L= 0;

e18..    2.34*x1 + 2*x5 + 5.04*x6 - x20 - x32 + 2*x39 + 2*x40 =L= 0;

e19..    1.5*x5 + 7.16*x6 + 17*x7 - x21 - x33 + 2*x39 + 2*x40 =L= 0;

e20..    2*x5 + 7.97*x6 + 15*x7 - x22 - x34 + 2*x39 + 2*x40 =L= 0;

e21..    x5 + 4.41*x6 + 12*x7 - x23 - x35 + 2*x39 + 2*x40 =L= 0;

e22..    26*x5 + 1.12*x6 + 7*x7 - x24 - x36 + 2*x39 + 2*x40 =L= 0;

e23..    2.43*x1 + 2.5*x2 + 7.5*x3 + 11.16*x4 + 12*x5 + 6*x7 - x25 - x37
       + 2*x39 + 2*x40 =L= 0;

e24..    1.35*x1 + 7.5*x2 + 0.75*x3 + 4.68*x4 - x26 - x38 + 2*x39 + 2*x40 =L= 0
      ;

e25..    x5 + x6 + x7 - 2*x39 - 2*x40 - x48 =L= 0;

e26..    x1 + x2 + x3 + x4 - 2*x39 - 2*x40 - x49 =L= 0;

e27..    x13 - 3*x15 - 3*x16 - 3*x17 - 3*x18 - 3*x19 - 3*x20 - 3*x21 - 3*x22
       - 3*x23 - 3*x24 - 3*x25 - 3*x26 =E= 0;

e28.. -(225*x50 - 0.0462962962962963*sqr(x50) - 0.555555555555555*sqr(x51) + 
      700*x51 - 0.178571428571429*sqr(x52) + 250*x52 - 0.166666666666667*sqr(
      x53) + 700*x53 - 0.0368421052631579*sqr(x54) + 210*x54 - 0.2*sqr(x55) + 
      220*x55) + x9 - 40*x62 - 300*x63 - 60*x64 =E= 0;

e29..    x12 - 4*x27 - 4*x28 - 4*x29 - 4*x30 - 4*x31 - 4*x32 - 4*x33 - 4*x34
       - 4*x35 - 4*x36 - 4*x37 - 4*x38 =E= 0;

e30..  - x10 - x11 - x12 - x13 + x14 =E= 0;

e31..  - x41 + x50 - x65 =E= 0;

e32..  - x43 + x51 - x66 =E= 0;

e33..  - x44 + x52 + x62 =E= 0;

e34..  - x45 + x53 + x63 =E= 0;

e35..  - x46 + x54 - x67 =E= 0;

e36..  - x47 + x55 + x64 =E= 0;

e37..  - 0.0916666666666667*x1 - 0.0783333333333333*x2 - 0.0883333333333333*x3
       - 0.176666666666667*x4 - 0.211666666666667*x5 - 0.1*x6 - 0.19*x7
       - 0.00666666666666667*x39 - 0.00666666666666667*x40 + x70 =E= 0;

e38..  - 1.5*x1 + x41 =E= 0;

e39..  - 6*x2 + x42 =E= 0;

e40..  - x3 + x43 =E= 0;

e41..  - 3*x4 + x44 =E= 0;

e42..  - 1.5*x5 + x45 =E= 0;

e43..  - 2*x6 + x46 =E= 0;

e44..  - 3*x7 + x47 =E= 0;

e45..  - 100*x41 - 200*x43 - 125*x44 - 350*x45 - 70*x46 - 120*x47 + x69 =E= 0;

e46..  - 10*x1 - 5*x3 - 50*x4 - 80*x5 - 5*x6 - 50*x7 + x10 =E= 0;

e47..    x11 - 40*x48 - 40*x49 =E= 0;

e48..    6*x2 - 1.3*x39 - 2*x40 =G= 0;

e49..    1.75*x1 - 1.6*x39 - 0.8*x40 =G= 0;

e50..  - x8 - x9 - x13 + x14 =E= 0;

e51..  - 40*x62 - 300*x63 - 60*x64 + 140*x65 + 270*x66 + 85*x67 + x71 =E= 0;

e52..    0.0462962962962963*x50 + x56 =E= 225;

e53..    0.555555555555555*x51 + x57 =E= 700;

e54..    0.178571428571429*x52 + x58 =E= 250;

e55..    0.166666666666667*x53 + x59 =E= 700;

e56..    0.0368421052631579*x54 + x60 =E= 210;

e57..    0.2*x55 + x61 =E= 220;

e58.. -(225*x50 - 0.0231481481481481*sqr(x50) - 0.277777777777778*sqr(x51) + 
      700*x51 - 0.0892857142857143*sqr(x52) + 250*x52 - 0.0833333333333333*sqr(
      x53) + 700*x53 - 0.0184210526315789*sqr(x54) + 210*x54 - 0.1*sqr(x55) + 
      220*x55) + x14 - 40*x62 - 300*x63 - 60*x64 + 140*x65 + 270*x66 + 85*x67
       - objvar =E= 0;

* set non-default bounds
x15.up = 25000;
x16.up = 25000;
x17.up = 25000;
x18.up = 25000;
x19.up = 25000;
x20.up = 25000;
x21.up = 25000;
x22.up = 25000;
x23.up = 25000;
x24.up = 25000;
x25.up = 25000;
x26.up = 25000;

* set non-default levels
x56.l = 100;
x57.l = 200;
x58.l = 125;
x59.l = 350;
x60.l = 70;
x61.l = 120;

* set non-default marginals
e17.m = 1;
e22.m = 1;
e27.m = 1;
e28.m = 1;
e29.m = 1;
e30.m = 1;
e31.m = 1;
e32.m = 1;
e33.m = 1;
e34.m = 1;
e35.m = 1;
e36.m = 1;
e37.m = 1;
e39.m = 1;
e40.m = 1;
e41.m = 1;
e43.m = 1;
e44.m = 1;
e45.m = 1;
e46.m = 1;
e47.m = 1;
e50.m = 1;
e51.m = 1;
e52.m = 1;
e53.m = 1;
e54.m = 1;
e55.m = 1;
e56.m = 1;
e57.m = 1;
x15.m = 1;
x16.m = 1;
x17.m = 1;
x18.m = 1;
x19.m = 1;
x20.m = 1;
x21.m = 1;
x22.m = 1;
x23.m = 1;
x24.m = 1;
x25.m = 1;
x26.m = 1;
x27.m = 1;
x28.m = 1;
x29.m = 1;
x30.m = 1;
x31.m = 1;
x32.m = 1;
x33.m = 1;
x34.m = 1;
x35.m = 1;
x36.m = 1;
x37.m = 1;
x38.m = 1;
x39.m = 1;
x40.m = 1;
x41.m = 1;
x42.m = 1;
x43.m = 1;
x44.m = 1;
x45.m = 1;
x46.m = 1;
x47.m = 1;
x48.m = 1;
x49.m = 1;
x50.m = 1;
x52.m = 1;
x53.m = 1;
x54.m = 1;
x55.m = 1;
x66.m = 1;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0