MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance demo7
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -1589042.38800000 (BARON) -1589042.38600000 (COUENNE) -1589042.38600000 (LINDO) -1589042.38600000 (SCIP) |
Referencesⓘ | Kutcher, Gary P, Meeraus, Alexander, and O'Mara, Gerald T, Agriculture Sector and Policy Models, The World Bank, 1988. |
Sourceⓘ | GAMS Model Library model demo7 |
Applicationⓘ | Agriculture |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | QCQP |
#Variablesⓘ | 70 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 6 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 13 |
#Nonlinear Nonzeros in Objectiveⓘ | 6 |
#Constraintsⓘ | 57 |
#Linear Constraintsⓘ | 56 |
#Quadratic Constraintsⓘ | 1 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 281 |
#Nonlinear Nonzeros in Jacobianⓘ | 6 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 6 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
#Blocks in Hessian of Lagrangianⓘ | 6 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 6.6667e-03 |
Maximal coefficientⓘ | 7.0000e+02 |
Infeasibility of initial pointⓘ | 500 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 58 30 2 26 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 71 71 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 295 283 12 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,objvar,x69 ,x70,x71; Positive Variables x1,x2,x3,x4,x5,x6,x7,x15,x16,x17,x18,x19,x20,x21,x22,x23 ,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,x37,x38,x39,x40 ,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53,x54,x55,x62,x63 ,x64,x65,x66,x67; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58; e1.. x1 + x2 + x3 + x4 =L= 4000; e2.. x1 + x2 + x3 + x4 =L= 4000; e3.. x1 + 0.5*x2 + x3 + x4 + 0.5*x5 =L= 4000; e4.. x1 + x3 + x4 + x5 =L= 4000; e5.. x1 + 0.25*x4 + x5 + 0.25*x6 =L= 4000; e6.. x5 + x6 =L= 4000; e7.. x5 + x6 + 0.75*x7 =L= 4000; e8.. x5 + x6 + x7 =L= 4000; e9.. x5 + x6 + x7 =L= 4000; e10.. x5 + 0.5*x6 + x7 =L= 4000; e11.. 0.5*x1 + 0.25*x2 + 0.25*x3 + 0.5*x4 + 0.75*x5 + 0.75*x7 =L= 4000; e12.. x1 + x2 + x3 + x4 =L= 4000; e13.. 1.72*x1 + 4.5*x2 + 0.75*x3 + 5.16*x4 - x15 - x27 + 2*x39 + 2*x40 =L= 0 ; e14.. 0.5*x1 + x2 + 0.75*x3 + 5*x4 - x16 - x28 + 2*x39 + 2*x40 =L= 0; e15.. x1 + 8*x2 + 0.75*x3 + 5*x4 + 5*x5 - x17 - x29 + 2*x39 + 2*x40 =L= 0; e16.. x1 + 16*x3 + 19.58*x4 + 5*x5 - x18 - x30 + 2*x39 + 2*x40 =L= 0; e17.. 17.16*x1 + 2.42*x4 + 9*x5 + 4.3*x6 - x19 - x31 + 2*x39 + 2*x40 =L= 0; e18.. 2.34*x1 + 2*x5 + 5.04*x6 - x20 - x32 + 2*x39 + 2*x40 =L= 0; e19.. 1.5*x5 + 7.16*x6 + 17*x7 - x21 - x33 + 2*x39 + 2*x40 =L= 0; e20.. 2*x5 + 7.97*x6 + 15*x7 - x22 - x34 + 2*x39 + 2*x40 =L= 0; e21.. x5 + 4.41*x6 + 12*x7 - x23 - x35 + 2*x39 + 2*x40 =L= 0; e22.. 26*x5 + 1.12*x6 + 7*x7 - x24 - x36 + 2*x39 + 2*x40 =L= 0; e23.. 2.43*x1 + 2.5*x2 + 7.5*x3 + 11.16*x4 + 12*x5 + 6*x7 - x25 - x37 + 2*x39 + 2*x40 =L= 0; e24.. 1.35*x1 + 7.5*x2 + 0.75*x3 + 4.68*x4 - x26 - x38 + 2*x39 + 2*x40 =L= 0 ; e25.. x5 + x6 + x7 - 2*x39 - 2*x40 - x48 =L= 0; e26.. x1 + x2 + x3 + x4 - 2*x39 - 2*x40 - x49 =L= 0; e27.. x13 - 3*x15 - 3*x16 - 3*x17 - 3*x18 - 3*x19 - 3*x20 - 3*x21 - 3*x22 - 3*x23 - 3*x24 - 3*x25 - 3*x26 =E= 0; e28.. -(225*x50 - 0.0462962962962963*sqr(x50) - 0.555555555555555*sqr(x51) + 700*x51 - 0.178571428571429*sqr(x52) + 250*x52 - 0.166666666666667*sqr( x53) + 700*x53 - 0.0368421052631579*sqr(x54) + 210*x54 - 0.2*sqr(x55) + 220*x55) + x9 - 40*x62 - 300*x63 - 60*x64 =E= 0; e29.. x12 - 4*x27 - 4*x28 - 4*x29 - 4*x30 - 4*x31 - 4*x32 - 4*x33 - 4*x34 - 4*x35 - 4*x36 - 4*x37 - 4*x38 =E= 0; e30.. - x10 - x11 - x12 - x13 + x14 =E= 0; e31.. - x41 + x50 - x65 =E= 0; e32.. - x43 + x51 - x66 =E= 0; e33.. - x44 + x52 + x62 =E= 0; e34.. - x45 + x53 + x63 =E= 0; e35.. - x46 + x54 - x67 =E= 0; e36.. - x47 + x55 + x64 =E= 0; e37.. - 0.0916666666666667*x1 - 0.0783333333333333*x2 - 0.0883333333333333*x3 - 0.176666666666667*x4 - 0.211666666666667*x5 - 0.1*x6 - 0.19*x7 - 0.00666666666666667*x39 - 0.00666666666666667*x40 + x70 =E= 0; e38.. - 1.5*x1 + x41 =E= 0; e39.. - 6*x2 + x42 =E= 0; e40.. - x3 + x43 =E= 0; e41.. - 3*x4 + x44 =E= 0; e42.. - 1.5*x5 + x45 =E= 0; e43.. - 2*x6 + x46 =E= 0; e44.. - 3*x7 + x47 =E= 0; e45.. - 100*x41 - 200*x43 - 125*x44 - 350*x45 - 70*x46 - 120*x47 + x69 =E= 0; e46.. - 10*x1 - 5*x3 - 50*x4 - 80*x5 - 5*x6 - 50*x7 + x10 =E= 0; e47.. x11 - 40*x48 - 40*x49 =E= 0; e48.. 6*x2 - 1.3*x39 - 2*x40 =G= 0; e49.. 1.75*x1 - 1.6*x39 - 0.8*x40 =G= 0; e50.. - x8 - x9 - x13 + x14 =E= 0; e51.. - 40*x62 - 300*x63 - 60*x64 + 140*x65 + 270*x66 + 85*x67 + x71 =E= 0; e52.. 0.0462962962962963*x50 + x56 =E= 225; e53.. 0.555555555555555*x51 + x57 =E= 700; e54.. 0.178571428571429*x52 + x58 =E= 250; e55.. 0.166666666666667*x53 + x59 =E= 700; e56.. 0.0368421052631579*x54 + x60 =E= 210; e57.. 0.2*x55 + x61 =E= 220; e58.. -(225*x50 - 0.0231481481481481*sqr(x50) - 0.277777777777778*sqr(x51) + 700*x51 - 0.0892857142857143*sqr(x52) + 250*x52 - 0.0833333333333333*sqr( x53) + 700*x53 - 0.0184210526315789*sqr(x54) + 210*x54 - 0.1*sqr(x55) + 220*x55) + x14 - 40*x62 - 300*x63 - 60*x64 + 140*x65 + 270*x66 + 85*x67 - objvar =E= 0; * set non-default bounds x15.up = 25000; x16.up = 25000; x17.up = 25000; x18.up = 25000; x19.up = 25000; x20.up = 25000; x21.up = 25000; x22.up = 25000; x23.up = 25000; x24.up = 25000; x25.up = 25000; x26.up = 25000; * set non-default levels x56.l = 100; x57.l = 200; x58.l = 125; x59.l = 350; x60.l = 70; x61.l = 120; * set non-default marginals e17.m = 1; e22.m = 1; e27.m = 1; e28.m = 1; e29.m = 1; e30.m = 1; e31.m = 1; e32.m = 1; e33.m = 1; e34.m = 1; e35.m = 1; e36.m = 1; e37.m = 1; e39.m = 1; e40.m = 1; e41.m = 1; e43.m = 1; e44.m = 1; e45.m = 1; e46.m = 1; e47.m = 1; e50.m = 1; e51.m = 1; e52.m = 1; e53.m = 1; e54.m = 1; e55.m = 1; e56.m = 1; e57.m = 1; x15.m = 1; x16.m = 1; x17.m = 1; x18.m = 1; x19.m = 1; x20.m = 1; x21.m = 1; x22.m = 1; x23.m = 1; x24.m = 1; x25.m = 1; x26.m = 1; x27.m = 1; x28.m = 1; x29.m = 1; x30.m = 1; x31.m = 1; x32.m = 1; x33.m = 1; x34.m = 1; x35.m = 1; x36.m = 1; x37.m = 1; x38.m = 1; x39.m = 1; x40.m = 1; x41.m = 1; x42.m = 1; x43.m = 1; x44.m = 1; x45.m = 1; x46.m = 1; x47.m = 1; x48.m = 1; x49.m = 1; x50.m = 1; x52.m = 1; x53.m = 1; x54.m = 1; x55.m = 1; x66.m = 1; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91