MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Removed Instance enpro56
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | |
Sourceⓘ | Aldo Vecchietti's Model Collection |
Applicationⓘ | Batch processing |
Added to libraryⓘ | 01 May 2001 |
Removed from libraryⓘ | 31 May 2014 |
Removed becauseⓘ | Variant of enpro56pb with some variable bounds missing |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 127 |
#Binary Variablesⓘ | 73 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 24 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 19 |
#Nonlinear Nonzeros in Objectiveⓘ | 19 |
#Constraintsⓘ | 191 |
#Linear Constraintsⓘ | 190 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 1 |
Operands in Gen. Nonlin. Functionsⓘ | exp |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 631 |
#Nonlinear Nonzeros in Jacobianⓘ | 5 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 60 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 24 |
#Blocks in Hessian of Lagrangianⓘ | 12 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.0000e-01 |
Maximal coefficientⓘ | 2.5000e+05 |
Infeasibility of initial pointⓘ | 8.54e+05 |
$offlisting * MINLP written by GAMS Convert at 04/17/01 16:37:40 * * Equation counts * Total E G L N X * 192 25 136 31 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 128 55 73 0 0 0 0 0 * FX 0 0 0 0 0 0 0 0 * * Nonzero counts * Total const NL DLL * 651 627 24 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,objvar,x50,x51,x52 ,x53,x54,x55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69 ,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86 ,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102 ,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115 ,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128; Positive Variables x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48; Binary Variables b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70 ,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87 ,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103 ,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116 ,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168 ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181 ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192; e1.. x1 - x7 + x37 =G= 2.06686275947298; e2.. x2 - x8 + x38 =G= 0.693147180559945; e3.. x3 - x9 + x39 =G= 1.64865862558738; e4.. x4 - x10 + x40 =G= 1.58923520511658; e5.. x5 - x11 + x41 =G= 1.80828877117927; e6.. x6 - x12 + x42 =G= 1.43508452528932; e7.. x1 - x13 + x37 =G= -0.356674943938732; e8.. x2 - x14 + x38 =G= -0.22314355131421; e9.. x3 - x15 + x39 =G= -0.105360515657826; e10.. x4 - x16 + x40 =G= 1.22377543162212; e11.. x5 - x17 + x41 =G= 0.741937344729377; e12.. x6 - x18 + x42 =G= 0.916290731874155; e13.. x1 - x19 + x37 =G= -0.356674943938732; e14.. x2 - x20 + x38 =G= 0.955511445027436; e15.. x3 - x21 + x39 =G= 0.470003629245736; e16.. x4 - x22 + x40 =G= 1.28093384546206; e17.. x5 - x23 + x41 =G= 1.16315080980568; e18.. x6 - x24 + x42 =G= 1.06471073699243; e19.. x1 - x25 + x37 =G= 1.54756250871601; e20.. x2 - x26 + x38 =G= 0.832909122935104; e21.. x3 - x27 + x39 =G= 0.470003629245736; e22.. x4 - x28 + x40 =G= 0.993251773010283; e23.. x5 - x29 + x41 =G= 0.182321556793955; e24.. x6 - x30 + x42 =G= 0.916290731874155; e25.. x1 - x31 + x37 =G= 0.182321556793955; e26.. x2 - x32 + x38 =G= 1.28093384546206; e27.. x3 - x33 + x39 =G= 0.8754687373539; e28.. x4 - x34 + x40 =G= 1.50407739677627; e29.. x5 - x35 + x41 =G= 0.470003629245736; e30.. x6 - x36 + x42 =G= 0.741937344729377; e31.. x7 + x43 + x51 =G= 1.85629799036563; e32.. x8 + x44 + x51 =G= 1.54756250871601; e33.. x9 + x45 + x51 =G= 2.11625551480255; e34.. x10 + x46 + x51 =G= 1.3609765531356; e35.. x11 + x47 + x51 =G= 0.741937344729377; e36.. x12 + x48 + x51 =G= 0.182321556793955; e37.. x13 + x43 + x52 =G= 1.91692261218206; e38.. x14 + x44 + x52 =G= 1.85629799036563; e39.. x15 + x45 + x52 =G= 1.87180217690159; e40.. x16 + x46 + x52 =G= 1.48160454092422; e41.. x17 + x47 + x52 =G= 0.832909122935104; e42.. x18 + x48 + x52 =G= 1.16315080980568; e43.. x19 + x43 + x53 =G= 0; e44.. x20 + x44 + x53 =G= 1.84054963339749; e45.. x21 + x45 + x53 =G= 1.68639895357023; e46.. x22 + x46 + x53 =G= 2.47653840011748; e47.. x23 + x47 + x53 =G= 1.7404661748405; e48.. x24 + x48 + x53 =G= 1.82454929205105; e49.. x25 + x43 + x54 =G= 1.16315080980568; e50.. x26 + x44 + x54 =G= 1.09861228866811; e51.. x27 + x45 + x54 =G= 1.25276296849537; e52.. x28 + x46 + x54 =G= 1.19392246847243; e53.. x29 + x47 + x54 =G= 1.02961941718116; e54.. x30 + x48 + x54 =G= 1.22377543162212; e55.. x31 + x43 + x55 =G= 0.741937344729377; e56.. x32 + x44 + x55 =G= 0.916290731874155; e57.. x33 + x45 + x55 =G= 1.43508452528932; e58.. x34 + x46 + x55 =G= 1.28093384546206; e59.. x35 + x47 + x55 =G= 1.30833281965018; e60.. x36 + x48 + x55 =G= 0.78845736036427; e61.. 250000*exp(x51) + 150000*exp(x52) + 180000*exp(x53) + 160000*exp(x54) + 120000*exp(x55) =L= 6000; e62.. - x8 + x50 - 10*b104 =G= -7.69741490700595; e63.. - x9 + x50 - 10*b105 =G= -7.69741490700595; e64.. - x10 + x50 - 10*b106 =G= -7.69741490700595; e65.. - x11 + x50 - 10*b107 =G= -7.69741490700595; e66.. - x12 + x50 - 10*b108 =G= -7.69741490700595; e67.. - x14 + x50 - 10*b109 =G= -7.69741490700595; e68.. - x15 + x50 - 10*b110 =G= -7.69741490700595; e69.. - x16 + x50 - 10*b111 =G= -7.69741490700595; e70.. - x17 + x50 - 10*b112 =G= -7.69741490700595; e71.. - x18 + x50 - 10*b113 =G= -7.69741490700595; e72.. - x20 + x50 - 10*b114 =G= -7.69741490700595; e73.. - x21 + x50 - 10*b115 =G= -7.69741490700595; e74.. - x22 + x50 - 10*b116 =G= -7.69741490700595; e75.. - x23 + x50 - 10*b117 =G= -7.69741490700595; e76.. - x24 + x50 - 10*b118 =G= -7.69741490700595; e77.. - x26 + x50 - 10*b119 =G= -7.69741490700595; e78.. - x27 + x50 - 10*b120 =G= -7.69741490700595; e79.. - x28 + x50 - 10*b121 =G= -7.69741490700595; e80.. - x29 + x50 - 10*b122 =G= -7.69741490700595; e81.. - x30 + x50 - 10*b123 =G= -7.69741490700595; e82.. - x32 + x50 - 10*b124 =G= -7.69741490700595; e83.. - x33 + x50 - 10*b125 =G= -7.69741490700595; e84.. - x34 + x50 - 10*b126 =G= -7.69741490700595; e85.. - x35 + x50 - 10*b127 =G= -7.69741490700595; e86.. - x36 + x50 - 10*b128 =G= -7.69741490700595; e87.. - x7 + x50 - 10*b104 =G= -7.69741490700595; e88.. - x8 + x50 - 10*b105 =G= -7.69741490700595; e89.. - x9 + x50 - 10*b106 =G= -7.69741490700595; e90.. - x10 + x50 - 10*b107 =G= -7.69741490700595; e91.. - x11 + x50 - 10*b108 =G= -7.69741490700595; e92.. - x13 + x50 - 10*b109 =G= -7.69741490700595; e93.. - x14 + x50 - 10*b110 =G= -7.69741490700595; e94.. - x15 + x50 - 10*b111 =G= -7.69741490700595; e95.. - x16 + x50 - 10*b112 =G= -7.69741490700595; e96.. - x17 + x50 - 10*b113 =G= -7.69741490700595; e97.. - x19 + x50 - 10*b114 =G= -7.69741490700595; e98.. - x20 + x50 - 10*b115 =G= -7.69741490700595; e99.. - x21 + x50 - 10*b116 =G= -7.69741490700595; e100.. - x22 + x50 - 10*b117 =G= -7.69741490700595; e101.. - x23 + x50 - 10*b118 =G= -7.69741490700595; e102.. - x25 + x50 - 10*b119 =G= -7.69741490700595; e103.. - x26 + x50 - 10*b120 =G= -7.69741490700595; e104.. - x27 + x50 - 10*b121 =G= -7.69741490700595; e105.. - x28 + x50 - 10*b122 =G= -7.69741490700595; e106.. - x29 + x50 - 10*b123 =G= -7.69741490700595; e107.. - x31 + x50 - 10*b124 =G= -7.69741490700595; e108.. - x32 + x50 - 10*b125 =G= -7.69741490700595; e109.. - x33 + x50 - 10*b126 =G= -7.69741490700595; e110.. - x34 + x50 - 10*b127 =G= -7.69741490700595; e111.. - x35 + x50 - 10*b128 =G= -7.69741490700595; e112.. x37 - 0.693147180559945*b62 - 1.09861228866811*b68 - 1.38629436111989*b74 =E= 0; e113.. x38 - 0.693147180559945*b63 - 1.09861228866811*b69 - 1.38629436111989*b75 =E= 0; e114.. x39 - 0.693147180559945*b64 - 1.09861228866811*b70 - 1.38629436111989*b76 =E= 0; e115.. x40 - 0.693147180559945*b65 - 1.09861228866811*b71 - 1.38629436111989*b77 =E= 0; e116.. x41 - 0.693147180559945*b66 - 1.09861228866811*b72 - 1.38629436111989*b78 =E= 0; e117.. x42 - 0.693147180559945*b67 - 1.09861228866811*b73 - 1.38629436111989*b79 =E= 0; e118.. x43 - 0.693147180559945*b86 - 1.09861228866811*b92 - 1.38629436111989*b98 =E= 0; e119.. x44 - 0.693147180559945*b87 - 1.09861228866811*b93 - 1.38629436111989*b99 =E= 0; e120.. x45 - 0.693147180559945*b88 - 1.09861228866811*b94 - 1.38629436111989*b100 =E= 0; e121.. x46 - 0.693147180559945*b89 - 1.09861228866811*b95 - 1.38629436111989*b101 =E= 0; e122.. x47 - 0.693147180559945*b90 - 1.09861228866811*b96 - 1.38629436111989*b102 =E= 0; e123.. x48 - 0.693147180559945*b91 - 1.09861228866811*b97 - 1.38629436111989*b103 =E= 0; e124.. b56 + b62 + b68 + b74 =E= 1; e125.. b57 + b63 + b69 + b75 =E= 1; e126.. b58 + b64 + b70 + b76 =E= 1; e127.. b59 + b65 + b71 + b77 =E= 1; e128.. b60 + b66 + b72 + b78 =E= 1; e129.. b61 + b67 + b73 + b79 =E= 1; e130.. b80 + b86 + b92 + b98 =E= 1; e131.. b81 + b87 + b93 + b99 =E= 1; e132.. b82 + b88 + b94 + b100 =E= 1; e133.. b83 + b89 + b95 + b101 =E= 1; e134.. b84 + b90 + b96 + b102 =E= 1; e135.. b85 + b91 + b97 + b103 =E= 1; e136.. b104 + b105 + b106 + b107 + b108 =L= 1; e137.. b109 + b110 + b111 + b112 + b113 =L= 1; e138.. b114 + b115 + b116 + b117 + b118 =L= 1; e139.. b119 + b120 + b121 + b122 + b123 =L= 1; e140.. b124 + b125 + b126 + b127 + b128 =L= 1; e141.. b104 + b105 + b106 + b107 + b108 + b109 + b110 + b111 + b112 + b113 + b114 + b115 + b116 + b117 + b118 + b119 + b120 + b121 + b122 + b123 + b124 + b125 + b126 + b127 + b128 =G= 1; e142.. x7 - x8 - 0.693147180559945*b104 =L= 0; e143.. x8 - x9 - 0.693147180559945*b105 =L= 0; e144.. x9 - x10 - 0.693147180559945*b106 =L= 0; e145.. x10 - x11 - 0.693147180559945*b107 =L= 0; e146.. x11 - x12 - 0.693147180559945*b108 =L= 0; e147.. x13 - x14 - 0.693147180559945*b109 =L= 0; e148.. x14 - x15 - 0.693147180559945*b110 =L= 0; e149.. x15 - x16 - 0.693147180559945*b111 =L= 0; e150.. x16 - x17 - 0.693147180559945*b112 =L= 0; e151.. x17 - x18 - 0.693147180559945*b113 =L= 0; e152.. x19 - x20 - 0.693147180559945*b114 =L= 0; e153.. x20 - x21 - 0.693147180559945*b115 =L= 0; e154.. x21 - x22 - 0.693147180559945*b116 =L= 0; e155.. x22 - x23 - 0.693147180559945*b117 =L= 0; e156.. x23 - x24 - 0.693147180559945*b118 =L= 0; e157.. x25 - x26 - 0.693147180559945*b119 =L= 0; e158.. x26 - x27 - 0.693147180559945*b120 =L= 0; e159.. x27 - x28 - 0.693147180559945*b121 =L= 0; e160.. x28 - x29 - 0.693147180559945*b122 =L= 0; e161.. x29 - x30 - 0.693147180559945*b123 =L= 0; e162.. x31 - x32 - 0.693147180559945*b124 =L= 0; e163.. x32 - x33 - 0.693147180559945*b125 =L= 0; e164.. x33 - x34 - 0.693147180559945*b126 =L= 0; e165.. x34 - x35 - 0.693147180559945*b127 =L= 0; e166.. x35 - x36 - 0.693147180559945*b128 =L= 0; e167.. x7 - x8 + 0.693147180559945*b104 =G= 0; e168.. x8 - x9 + 0.693147180559945*b105 =G= 0; e169.. x9 - x10 + 0.693147180559945*b106 =G= 0; e170.. x10 - x11 + 0.693147180559945*b107 =G= 0; e171.. x11 - x12 + 0.693147180559945*b108 =G= 0; e172.. x13 - x14 + 0.693147180559945*b109 =G= 0; e173.. x14 - x15 + 0.693147180559945*b110 =G= 0; e174.. x15 - x16 + 0.693147180559945*b111 =G= 0; e175.. x16 - x17 + 0.693147180559945*b112 =G= 0; e176.. x17 - x18 + 0.693147180559945*b113 =G= 0; e177.. x19 - x20 + 0.693147180559945*b114 =G= 0; e178.. x20 - x21 + 0.693147180559945*b115 =G= 0; e179.. x21 - x22 + 0.693147180559945*b116 =G= 0; e180.. x22 - x23 + 0.693147180559945*b117 =G= 0; e181.. x23 - x24 + 0.693147180559945*b118 =G= 0; e182.. x25 - x26 + 0.693147180559945*b119 =G= 0; e183.. x26 - x27 + 0.693147180559945*b120 =G= 0; e184.. x27 - x28 + 0.693147180559945*b121 =G= 0; e185.. x28 - x29 + 0.693147180559945*b122 =G= 0; e186.. x29 - x30 + 0.693147180559945*b123 =G= 0; e187.. x31 - x32 + 0.693147180559945*b124 =G= 0; e188.. x32 - x33 + 0.693147180559945*b125 =G= 0; e189.. x33 - x34 + 0.693147180559945*b126 =G= 0; e190.. x34 - x35 + 0.693147180559945*b127 =G= 0; e191.. x35 - x36 + 0.693147180559945*b128 =G= 0; e192.. - (250*(exp(0.6*x1 + x37 + x43) + exp(0.6*x2 + x38 + x44) + exp(0.6*x3 + x39 + x45) + exp(0.6*x4 + x40 + x46) + exp(0.6*x5 + x41 + x47) + exp( 0.6*x6 + x42 + x48)) + 150*exp(0.5*x50)) + objvar =E= 0; * set non default bounds x1.lo = 5.7037824746562; x1.up = 8.1605182474775; x2.lo = 5.7037824746562; x2.up = 8.1605182474775; x3.lo = 5.7037824746562; x3.up = 8.1605182474775; x4.lo = 5.7037824746562; x4.up = 8.1605182474775; x5.lo = 5.7037824746562; x5.up = 8.1605182474775; x6.lo = 5.7037824746562; x6.up = 8.1605182474775; x7.lo = 4.45966260231685; x7.up = 6.09365548800453; x8.lo = 4.45966260231685; x8.up = 6.09365548800453; x9.lo = 4.45966260231685; x9.up = 6.09365548800453; x10.lo = 4.45966260231685; x10.up = 6.09365548800453; x11.lo = 4.45966260231685; x11.up = 6.09365548800453; x12.lo = 4.45966260231685; x12.up = 6.09365548800453; x13.lo = 3.74950407593037; x13.up = 6.93674281585539; x14.lo = 3.74950407593037; x14.up = 6.93674281585539; x15.lo = 3.74950407593037; x15.up = 6.93674281585539; x16.lo = 3.74950407593037; x16.up = 6.93674281585539; x17.lo = 3.74950407593037; x17.up = 6.93674281585539; x18.lo = 3.74950407593037; x18.up = 6.93674281585539; x19.lo = 4.49144142065975; x19.up = 6.87958440201544; x20.lo = 4.49144142065975; x20.up = 6.87958440201544; x21.lo = 4.49144142065975; x21.up = 6.87958440201544; x22.lo = 4.49144142065975; x22.up = 6.87958440201544; x23.lo = 4.49144142065975; x23.up = 6.87958440201544; x24.lo = 4.49144142065975; x24.up = 6.87958440201544; x25.lo = 3.14988295338125; x25.up = 6.61295573876149; x26.lo = 3.14988295338125; x26.up = 6.61295573876149; x27.lo = 3.14988295338125; x27.up = 6.61295573876149; x28.lo = 3.14988295338125; x28.up = 6.61295573876149; x29.lo = 3.14988295338125; x29.up = 6.61295573876149; x30.lo = 3.14988295338125; x30.up = 6.61295573876149; x31.lo = 3.04452243772342; x31.up = 6.65644085070123; x32.lo = 3.04452243772342; x32.up = 6.65644085070123; x33.lo = 3.04452243772342; x33.up = 6.65644085070123; x34.lo = 3.04452243772342; x34.up = 6.65644085070123; x35.lo = 3.04452243772342; x35.up = 6.65644085070123; x36.lo = 3.04452243772342; x36.up = 6.65644085070123; x37.up = 1.38629436111989; x38.up = 1.38629436111989; x39.up = 1.38629436111989; x40.up = 1.38629436111989; x41.up = 1.38629436111989; x42.up = 1.38629436111989; x43.up = 1.38629436111989; x44.up = 1.38629436111989; x45.up = 1.38629436111989; x46.up = 1.38629436111989; x47.up = 1.38629436111989; x48.up = 1.38629436111989; x50.lo = 4.60517018598809; x50.up = 9.61580548008435; $if set nostart $goto modeldef * set non default levels x7.l = 5.27665904516069; x8.l = 5.27665904516069; x9.l = 5.27665904516069; x10.l = 5.27665904516069; x11.l = 5.27665904516069; x12.l = 5.27665904516069; x13.l = 5.34312344589288; x14.l = 5.34312344589288; x15.l = 5.34312344589288; x16.l = 5.34312344589288; x17.l = 5.34312344589288; x18.l = 5.34312344589288; x19.l = 5.68551291133759; x20.l = 5.68551291133759; x21.l = 5.68551291133759; x22.l = 5.68551291133759; x23.l = 5.68551291133759; x24.l = 5.68551291133759; x25.l = 4.88141934607137; x26.l = 4.88141934607137; x27.l = 4.88141934607137; x28.l = 4.88141934607137; x29.l = 4.88141934607137; x30.l = 4.88141934607137; x31.l = 4.85048164421233; x32.l = 4.85048164421233; x33.l = 4.85048164421233; x34.l = 4.85048164421233; x35.l = 4.85048164421233; x36.l = 4.85048164421233; x43.l = 0.693147180559945; x44.l = 0.693147180559945; x45.l = 0.693147180559945; x46.l = 0.693147180559945; x47.l = 0.693147180559945; x48.l = 0.693147180559945; x50.l = 7.11048783303622; * set non default marginals $label modeldef Model m / all /; m.limrow=0; m.limcol=0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91