MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance etamac
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -15.83529486 (ANTIGONE) -16.49103820 (BARON) -18.38730842 (COUENNE) -16.39901950 (LINDO) -15.41099486 (SCIP) |
Referencesⓘ | Manne, Alan S, ETA-MACRO: A Model of Energy-Economy Interactions. In Hitch, Charles J, Ed, Modeling Energy-Economy Interactions: Five Approaches, Resources for the Future, Washington, DC, 1977. |
Sourceⓘ | GAMS Model Library model etamac |
Applicationⓘ | Energy |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 97 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 35 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 9 |
#Nonlinear Nonzeros in Objectiveⓘ | 9 |
#Constraintsⓘ | 70 |
#Linear Constraintsⓘ | 61 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 9 |
Operands in Gen. Nonlin. Functionsⓘ | log mul vcpower |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 216 |
#Nonlinear Nonzeros in Jacobianⓘ | 26 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 85 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 35 |
#Blocks in Hessian of Lagrangianⓘ | 18 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 1.944444 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 7.0000e-02 |
Maximal coefficientⓘ | 1.0000e+03 |
Infeasibility of initial pointⓘ | 2814 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 71 70 0 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 98 98 0 0 0 0 0 0 * FX 1 * * Nonzero counts * Total const NL DLL * 226 191 35 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,objvar; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71; e1.. x10 - 4.91287681*x80 =E= 0; e2.. x11 - 4.91287681*x81 =E= 0; e3.. x12 - 4.91287681*x82 =E= 0; e4.. x13 - 4.91287681*x83 =E= 0; e5.. x14 - 4.91287681*x84 =E= 0; e6.. x15 - 4.91287681*x85 =E= 0; e7.. x16 - 4.91287681*x86 =E= 0; e8.. x17 - 4.91287681*x87 =E= 0; e9.. -(0.820744282617518*x10**(-0.342222222222222) + 0.306708090151268*x45**(- 0.427777777777778)*x63**(-0.794444444444445))**(-0.818181818181818) + x27 =E= 0; e10.. -(0.7206494796327*x11**(-0.342222222222222) + 0.306708090151268*x46**(- 0.427777777777778)*x64**(-0.794444444444445))**(-0.818181818181818) + x28 =E= 0; e11.. -(0.632761852252708*x12**(-0.342222222222222) + 0.306708090151268*x47**(- 0.427777777777778)*x65**(-0.794444444444445))**(-0.818181818181818) + x29 =E= 0; e12.. -(0.555592660485018*x13**(-0.342222222222222) + 0.306708090151268*x48**(- 0.427777777777778)*x66**(-0.794444444444445))**(-0.818181818181818) + x30 =E= 0; e13.. -(0.487834725317074*x14**(-0.342222222222222) + 0.306708090151268*x49**(- 0.427777777777778)*x67**(-0.794444444444445))**(-0.818181818181818) + x31 =E= 0; e14.. -(0.428340286240339*x15**(-0.342222222222222) + 0.306708090151268*x50**(- 0.427777777777778)*x68**(-0.794444444444445))**(-0.818181818181818) + x32 =E= 0; e15.. -(0.376101559185243*x16**(-0.342222222222222) + 0.306708090151268*x51**(- 0.427777777777778)*x69**(-0.794444444444445))**(-0.818181818181818) + x33 =E= 0; e16.. -(0.330233665535262*x17**(-0.342222222222222) + 0.306708090151268*x52**(- 0.427777777777778)*x70**(-0.794444444444445))**(-0.818181818181818) + x34 =E= 0; e17.. - x35 + x44 =E= -2.038431744; e18.. 0.8153726976*x35 - x36 + x45 =E= 0; e19.. 0.8153726976*x36 - x37 + x46 =E= 0; e20.. 0.8153726976*x37 - x38 + x47 =E= 0; e21.. 0.8153726976*x38 - x39 + x48 =E= 0; e22.. 0.8153726976*x39 - x40 + x49 =E= 0; e23.. 0.8153726976*x40 - x41 + x50 =E= 0; e24.. 0.8153726976*x41 - x42 + x51 =E= 0; e25.. 0.8153726976*x42 - x43 + x52 =E= 0; e26.. - x53 + x62 =E= -40.76863488; e27.. 0.8153726976*x53 - x54 + x63 =E= 0; e28.. 0.8153726976*x54 - x55 + x64 =E= 0; e29.. 0.8153726976*x55 - x56 + x65 =E= 0; e30.. 0.8153726976*x56 - x57 + x66 =E= 0; e31.. 0.8153726976*x57 - x58 + x67 =E= 0; e32.. 0.8153726976*x58 - x59 + x68 =E= 0; e33.. 0.8153726976*x59 - x60 + x69 =E= 0; e34.. 0.8153726976*x60 - x61 + x70 =E= 0; e35.. - 0.8153726976*x1 + x2 - x10 =E= 0; e36.. - 0.8153726976*x2 + x3 - x11 =E= 0; e37.. - 0.8153726976*x3 + x4 - x12 =E= 0; e38.. - 0.8153726976*x4 + x5 - x13 =E= 0; e39.. - 0.8153726976*x5 + x6 - x14 =E= 0; e40.. - 0.8153726976*x6 + x7 - x15 =E= 0; e41.. - 0.8153726976*x7 + x8 - x16 =E= 0; e42.. - 0.8153726976*x8 + x9 - x17 =E= 0; e43.. -(0.612508399277048 + 0.306708090151268*x44**(-0.427777777777778)*x62**(- 0.794444444444445))**(-0.818181818181818) + x18 =E= 3.4653339648; e44.. - 0.8153726976*x18 + x19 - x27 =E= 0; e45.. - 0.8153726976*x19 + x20 - x28 =E= 0; e46.. - 0.8153726976*x20 + x21 - x29 =E= 0; e47.. - 0.8153726976*x21 + x22 - x30 =E= 0; e48.. - 0.8153726976*x22 + x23 - x31 =E= 0; e49.. - 0.8153726976*x23 + x24 - x32 =E= 0; e50.. - 0.8153726976*x24 + x25 - x33 =E= 0; e51.. - 0.8153726976*x25 + x26 - x34 =E= 0; e52.. - 52.550502505*x35 - 4.9683636144*x53 + 1000*x89 =E= 0; e53.. - 55.2311062705602*x36 - 5.48547488997641*x54 + 1000*x90 =E= 0; e54.. - 58.0484477684999*x37 - 6.05640752245858*x55 + 1000*x91 =E= 0; e55.. - 61.0095019973984*x38 - 6.68676328190259*x56 + 1000*x92 =E= 0; e56.. - 64.1215997508617*x39 - 7.38272697509128*x57 + 1000*x93 =E= 0; e57.. - 67.3924457666453*x40 - 8.15112712846509*x58 + 1000*x94 =E= 0; e58.. - 70.8301378015635*x41 - 8.99950298698105*x59 + 1000*x95 =E= 0; e59.. - 74.4431866794111*x42 - 9.93617848626683*x60 + 1000*x96 =E= 0; e60.. - 78.2405373615315*x43 - 10.970343923856*x61 + 1000*x97 =E= 0; e61.. x18 - x71 - x80 - x89 =E= 0; e62.. x19 - x72 - x81 - x90 =E= 0; e63.. x20 - x73 - x82 - x91 =E= 0; e64.. x21 - x74 - x83 - x92 =E= 0; e65.. x22 - x75 - x84 - x93 =E= 0; e66.. x23 - x76 - x85 - x94 =E= 0; e67.. x24 - x77 - x86 - x95 =E= 0; e68.. x25 - x78 - x87 - x96 =E= 0; e69.. x26 - x79 - x88 - x97 =E= 0; e70.. 0.07*x9 - x88 =L= 0; e71.. -(0.8153726976*log(x71) + 0.664832635991501*log(x72) + 0.542086379860909* log(x73) + 0.442002433879407*log(x74) + 0.360396716858018*log(x75) + 0.293857643230706*log(x76) + 0.239603499271399*log(x77) + 0.19536615155532*log(x78) + 3.98240565033479*log(x79)) - objvar =E= 0; * set non-default bounds x1.fx = 12.32657617084; x2.lo = 10.9; x3.lo = 10.9; x4.lo = 10.9; x5.lo = 10.9; x6.lo = 10.9; x7.lo = 10.9; x8.lo = 10.9; x9.lo = 10.9; x10.lo = 1.0317041301; x11.lo = 1.0317041301; x12.lo = 1.0317041301; x13.lo = 1.0317041301; x14.lo = 1.0317041301; x15.lo = 1.0317041301; x16.lo = 1.0317041301; x17.lo = 1.0317041301; x18.lo = 4.25; x19.lo = 4.25; x20.lo = 4.25; x21.lo = 4.25; x22.lo = 4.25; x23.lo = 4.25; x24.lo = 4.25; x25.lo = 4.25; x26.lo = 4.25; x27.lo = 0.508311836408595; x28.lo = 0.589272733608307; x29.lo = 0.683128602764001; x30.lo = 0.79193327859709; x31.lo = 0.918067718453005; x32.lo = 1.06429210445432; x33.lo = 1.23380624417608; x34.lo = 1.43031959158279; x35.lo = 2.5; x36.lo = 2.5; x37.lo = 2.5; x38.lo = 2.5; x39.lo = 2.5; x40.lo = 2.5; x41.lo = 2.5; x42.lo = 2.5; x43.lo = 2.5; x44.lo = 0.257926032525; x45.lo = 0.299006962593291; x46.lo = 0.346631019769593; x47.lo = 0.401840354567059; x48.lo = 0.465843105057112; x49.lo = 0.540039834384121; x50.lo = 0.626054179090777; x51.lo = 0.725768378927107; x52.lo = 0.841364465636933; x53.lo = 50; x54.lo = 50; x55.lo = 50; x56.lo = 50; x57.lo = 50; x58.lo = 50; x59.lo = 50; x60.lo = 50; x61.lo = 50; x62.lo = 5.1585206505; x63.lo = 5.98013925186582; x64.lo = 6.93262039539185; x65.lo = 8.03680709134119; x66.lo = 9.31686210114223; x67.lo = 10.8007966876824; x68.lo = 12.5210835818155; x69.lo = 14.5153675785421; x70.lo = 16.8272893127387; x71.lo = 3.2; x72.lo = 3.2; x73.lo = 3.2; x74.lo = 3.2; x75.lo = 3.2; x76.lo = 3.2; x77.lo = 3.2; x78.lo = 3.2; x79.lo = 3.2; x80.lo = 0.7; x81.lo = 0.7; x82.lo = 0.7; x83.lo = 0.7; x84.lo = 0.7; x85.lo = 0.7; x86.lo = 0.7; x87.lo = 0.7; x88.lo = 0.7; * set non-default levels x2.l = 14.6486885348509; x3.l = 16.9818448409483; x4.l = 19.6866124578966; x5.l = 22.8221794332309; x6.l = 26.4571609359673; x7.l = 30.6711007526496; x8.l = 35.5562119327899; x9.l = 41.2193946739997; x18.l = 4.926914815775; x19.l = 5.71164461221252; x20.l = 6.62136152055325; x21.l = 7.67597274734501; x22.l = 8.89855620103042; x23.l = 10.3158655025561; x24.l = 11.958915431079; x25.l = 13.8636606159961; x26.l = 16.0717823270182; x35.l = 2.89818518575; x36.l = 3.35979094836031; x37.l = 3.89491854150191; x38.l = 4.51527808667354; x39.l = 5.23444482413554; x40.l = 6.06815617797415; x41.l = 7.03465613592881; x42.l = 8.15509447999769; x43.l = 9.45398960412836; x53.l = 57.963703715; x54.l = 67.1958189672061; x55.l = 77.8983708300382; x56.l = 90.3055617334707; x57.l = 104.688896482711; x58.l = 121.363123559483; x59.l = 140.693122718576; x60.l = 163.101889599954; x61.l = 189.079792082567; x71.l = 3.70967703776; x72.l = 4.30053241390119; x73.l = 4.98549573312245; x74.l = 5.77955595094213; x75.l = 6.70008937489349; x76.l = 7.76723990780692; x77.l = 9.00435985398888; x78.l = 10.438520934397; x79.l = 12.1011066932843; x80.l = 0.81149185201; x81.l = 0.940741465540885; x82.l = 1.09057719162054; x83.l = 1.26427786426859; x84.l = 1.46564455075795; x85.l = 1.69908372983276; x86.l = 1.96970371806007; x87.l = 2.28342645439935; x88.l = 2.64711708915594; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91