MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex14_1_2
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -0.00000000 (ANTIGONE) 0.00000000 (BARON) -0.00000000 (COUENNE) 0.00000000 (LINDO) 0.00000000 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Meintjes, K and Morgan, A P, Chemical-Equilibrium Systems as Numerical Test Problems, ACM Transactions on Mathematical Software, 16:2, 1990, 143-151. |
Sourceⓘ | Test Problem ex14.1.2 of Chapter 14 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 6 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 4 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 9 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 3 |
#Polynomial Constraintsⓘ | 6 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 41 |
#Nonlinear Nonzeros in Jacobianⓘ | 26 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 9 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 3 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 4 |
Maximal blocksize in Hessian of Lagrangianⓘ | 4 |
Average blocksize in Hessian of Lagrangianⓘ | 4.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 4.4975e-07 |
Maximal coefficientⓘ | 4.0000e+01 |
Infeasibility of initial pointⓘ | 0.9999 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 10 2 0 8 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 7 7 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 43 17 26 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,objvar; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10; e1.. - x6 + objvar =E= 0; e2.. x1*x2 + x1 - 3*x5 =E= 0; e3.. 2.8845e-6*sqr(x2) + 4.4975e-7*x2 + 2*x1*x2 + x1 + 0.000545176668613029*x2* x3 + 3.40735417883143e-5*x2*x4 + sqr(x3)*x2 - 10*x5 - x6 =L= 0; e4.. (-2.8845e-6*sqr(x2)) - 4.4975e-7*x2 - 2*x1*x2 - x1 - 0.000545176668613029* x2*x3 - 3.40735417883143e-5*x2*x4 - sqr(x3)*x2 + 10*x5 - x6 =L= 0; e5.. 0.386*sqr(x3) + 0.000410621754172864*x3 + 0.000545176668613029*x2*x3 + 2* sqr(x3)*x2 - 8*x5 - x6 =L= 0; e6.. (-0.386*sqr(x3)) - 0.000410621754172864*x3 - 0.000545176668613029*x2*x3 - 2*sqr(x3)*x2 + 8*x5 - x6 =L= 0; e7.. 2*sqr(x4) + 3.40735417883143e-5*x2*x4 - 40*x5 - x6 =L= 0; e8.. (-2*sqr(x4)) - 3.40735417883143e-5*x2*x4 + 40*x5 - x6 =L= 0; e9.. 9.615e-7*sqr(x2) + 4.4975e-7*x2 + 0.193*sqr(x3) + 0.000410621754172864*x3 + sqr(x4) + x1*x2 + x1 + 0.000545176668613029*x2*x3 + 3.40735417883143e-5 *x2*x4 + sqr(x3)*x2 - x6 =L= 1; e10.. (-9.615e-7*sqr(x2)) - 4.4975e-7*x2 - 0.193*sqr(x3) - 0.000410621754172864 *x3 - sqr(x4) - x1*x2 - x1 - 0.000545176668613029*x2*x3 - 3.40735417883143e-5*x2*x4 - sqr(x3)*x2 - x6 =L= -1; * set non-default bounds x1.lo = 0.0001; x1.up = 100; x2.lo = 0.0001; x2.up = 100; x3.lo = 0.0001; x3.up = 100; x4.lo = 0.0001; x4.up = 100; x5.lo = 0.0001; x5.up = 100; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91