MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance ex14_1_5

Formats ams gms mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
-0.00000000 p1 ( gdx sol )
(infeas: 6e-14)
Other points (infeas > 1e-08)  
Dual Bounds
-0.00000000 (ANTIGONE)
-0.00000000 (BARON)
-0.00000000 (COUENNE)
-0.00000000 (LINDO)
-0.00000000 (SCIP)
References Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999.
Kearfott, R and Novoa, M, Algorithm 681: INTBIS, A Portable Interval Newton/Bisection Package, ACM Transactions on Mathematical Software, 16:2, 1990, 152-157.
Source Test Problem ex14.1.5 of Chapter 14 of Floudas e.a. handbook
Added to library 31 Jul 2001
Problem type NLP
#Variables 6
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 5
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 1
#Nonlinear Nonzeros in Objective 0
#Constraints 6
#Linear Constraints 4
#Quadratic Constraints 0
#Polynomial Constraints 2
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 32
#Nonlinear Nonzeros in Jacobian 10
#Nonzeros in (Upper-Left) Hessian of Lagrangian 20
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 5
Maximal blocksize in Hessian of Lagrangian 5
Average blocksize in Hessian of Lagrangian 5.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e+00
Maximal coefficient 2.0000e+00
Infeasibility of initial point 6
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          7        5        0        2        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          7        7        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         34       24       10        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,objvar;

Equations  e1,e2,e3,e4,e5,e6,e7;


e1..  - x6 + objvar =E= 0;

e2..    2*x1 + x2 + x3 + x4 + x5 =E= 6;

e3..    x1 + 2*x2 + x3 + x4 + x5 =E= 6;

e4..    x1 + x2 + 2*x3 + x4 + x5 =E= 6;

e5..    x1 + x2 + x3 + 2*x4 + x5 =E= 6;

e6.. x1*x2*x3*x4*x5 - x6 =L= 1;

e7.. -x1*x2*x3*x4*x5 - x6 =L= -1;

* set non-default bounds
x1.lo = -2; x1.up = 2;
x2.lo = -2; x2.up = 2;
x3.lo = -2; x3.up = 2;
x4.lo = -2; x4.up = 2;
x5.lo = -2; x5.up = 2;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0