MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex14_1_7
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -0.00000000 (ANTIGONE) 0.00000000 (BARON) -0.00000000 (COUENNE) -0.00000000 (LINDO) 0.00000000 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Ratschek, H and Rokne, J, Experiments using interval analysis for solving a circuit design problem, Journal of Global Optimization, 3:4, 1993, 501-518. |
Sourceⓘ | Test Problem ex14.1.7 of Chapter 14 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 10 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 9 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 17 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 1 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 16 |
Operands in Gen. Nonlin. Functionsⓘ | exp mul |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 116 |
#Nonlinear Nonzeros in Jacobianⓘ | 100 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 59 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 5 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 9 |
Maximal blocksize in Hessian of Lagrangianⓘ | 9 |
Average blocksize in Hessian of Lagrangianⓘ | 9.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.2095e-03 |
Maximal coefficientⓘ | 2.1148e+02 |
Infeasibility of initial pointⓘ | 211.5 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 18 2 0 16 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 11 11 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 118 18 100 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18; e1.. - x10 + objvar =E= 0; e2.. (1 - x1*x2)*x3*(-1 + exp(x5*(0.485 - 0.0052095*x7 - 0.0285132*x8))) + 23.3037*x2 - x10 =L= 28.5132; e3.. (1 - x1*x2)*x3*(-1 + exp(x5*(0.752 - 0.0100677*x7 - 0.1118467*x8))) + 101.779*x2 - x10 =L= 111.8467; e4.. (1 - x1*x2)*x3*(-1 + exp(x5*(0.869 - 0.0229274*x7 - 0.1343884*x8))) + 111.461*x2 - x10 =L= 134.3884; e5.. (1 - x1*x2)*x3*(-1 + exp(x5*(0.982 - 0.0202153*x7 - 0.2114823*x8))) + 191.267*x2 - x10 =L= 211.4823; e6.. (-(1 - x1*x2)*x3*(-1 + exp(x5*(0.485 - 0.0052095*x7 - 0.0285132*x8)))) - 23.3037*x2 - x10 =L= -28.5132; e7.. (-(1 - x1*x2)*x3*(-1 + exp(x5*(0.752 - 0.0100677*x7 - 0.1118467*x8)))) - 101.779*x2 - x10 =L= -111.8467; e8.. (-(1 - x1*x2)*x3*(-1 + exp(x5*(0.869 - 0.0229274*x7 - 0.1343884*x8)))) - 111.461*x2 - x10 =L= -134.3884; e9.. (-(1 - x1*x2)*x3*(-1 + exp(x5*(0.982 - 0.0202153*x7 - 0.2114823*x8)))) - 191.267*x2 - x10 =L= -211.4823; e10.. (1 - x1*x2)*x4*(-1 + exp(x6*(0.116 - 0.0052095*x7 + 0.0233037*x9))) - 28.5132*x1 - x10 =L= -23.3037; e11.. (1 - x1*x2)*x4*(-1 + exp(x6*(-0.502 - 0.0100677*x7 + 0.101779*x9))) - 111.8467*x1 - x10 =L= -101.779; e12.. (1 - x1*x2)*x4*(-1 + exp(x6*(0.166 - 0.0229274*x7 + 0.111461*x9))) - 134.3884*x1 - x10 =L= -111.461; e13.. (1 - x1*x2)*x4*(-1 + exp(x6*(-0.473 - 0.0202153*x7 + 0.191267*x9))) - 211.4823*x1 - x10 =L= -191.267; e14.. 28.5132*x1 - (1 - x1*x2)*x4*(-1 + exp(x6*(0.116 - 0.0052095*x7 + 0.0233037*x9))) - x10 =L= 23.3037; e15.. 111.8467*x1 - (1 - x1*x2)*x4*(-1 + exp(x6*(-0.502 - 0.0100677*x7 + 0.101779*x9))) - x10 =L= 101.779; e16.. 134.3884*x1 - (1 - x1*x2)*x4*(-1 + exp(x6*(0.166 - 0.0229274*x7 + 0.111461*x9))) - x10 =L= 111.461; e17.. 211.4823*x1 - (1 - x1*x2)*x4*(-1 + exp(x6*(-0.473 - 0.0202153*x7 + 0.191267*x9))) - x10 =L= 191.267; e18.. x1*x3 - x2*x4 =E= 0; * set non-default bounds x1.up = 10; x2.up = 10; x3.up = 10; x4.up = 10; x5.up = 10; x6.up = 10; x7.up = 10; x8.up = 10; x9.up = 10; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91