MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance ex14_1_8

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
0.04141589 p1 ( gdx sol )
(infeas: 0)
0.00000000 p2 ( gdx sol )
(infeas: 2e-14)
Other points (infeas > 1e-08)  
Dual Bounds
-0.00000000 (ANTIGONE)
0.00000000 (BARON)
0.00000000 (COUENNE)
-0.00000000 (LINDO)
0.00000000 (SCIP)
References Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999.
Kubíček, M, Hofmann, H, Hlaváček, V, and Sinkule, J, Multiplicity and Stability in a Sequence of Two Nonadiabatic Nonisothermal CSTRS, Chemical Engineering Science, 35:4, 1980, 987-996.
Source Test Problem ex14.1.8 of Chapter 14 of Floudas e.a. handbook
Added to library 31 Jul 2001
Problem type NLP
#Variables 3
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 2
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 1
#Nonlinear Nonzeros in Objective 0
#Constraints 4
#Linear Constraints 0
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 4
Operands in Gen. Nonlin. Functions div exp mul
Constraints curvature indefinite
#Nonzeros in Jacobian 10
#Nonlinear Nonzeros in Jacobian 6
#Nonzeros in (Upper-Left) Hessian of Lagrangian 4
#Nonzeros in Diagonal of Hessian of Lagrangian 2
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 2
Average blocksize in Hessian of Lagrangian 2.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e-02
Maximal coefficient 1.0000e+01
Infeasibility of initial point 0.143
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          5        1        0        4        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          4        4        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         12        6        6        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,objvar;

Positive Variables  x1,x2;

Equations  e1,e2,e3,e4,e5;


e1..  - x3 + objvar =E= 0;

e2.. exp(10*x1/(1 + 0.01*x1))*(0.0476666666666666 - 0.0649999999999999*x1) - x1
      - x3 =L= 0;

e3.. x1 - exp(10*x1/(1 + 0.01*x1))*(0.0476666666666666 - 0.0649999999999999*x1)
      - x3 =L= 0;

e4.. exp(10*x2/(1 + 0.01*x2))*(0.143 - 0.13*x1 - 0.195*x2) + x1 - 3*x2 - x3
      =L= 0;

e5.. (-exp(10*x2/(1 + 0.01*x2))*(0.143 - 0.13*x1 - 0.195*x2)) - x1 + 3*x2 - x3
      =L= 0;

* set non-default bounds
x1.up = 1;
x2.up = 1;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0