MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex14_2_3
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -0.00000000 (ANTIGONE) -0.00000000 (BARON) 0.00000000 (COUENNE) 0.00000000 (LINDO) 0.00000000 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. |
Sourceⓘ | Test Problem ex14.2.3 of Chapter 14 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 6 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 5 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 9 |
#Linear Constraintsⓘ | 1 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 8 |
Operands in Gen. Nonlin. Functionsⓘ | div log |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 52 |
#Nonlinear Nonzeros in Jacobianⓘ | 40 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 17 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 5 |
#Blocks in Hessian of Lagrangianⓘ | 2 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 4 |
Average blocksize in Hessian of Lagrangianⓘ | 2.5 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.7631e-01 |
Maximal coefficientⓘ | 3.6433e+03 |
Infeasibility of initial pointⓘ | 0.0005272 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 10 2 0 8 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 7 7 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 54 14 40 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,objvar,x7; Positive Variables x7; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10; e1.. objvar - x7 =E= 0; e2.. log(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002*x4) + x1/(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002* x4) + 1.55190688128384*x2/(1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144*x4) + 0.767395887387844*x3/(0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436*x4) + 0.989870205661735*x4/( 0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4) + 2787.49800065313/(229.664 + x5) - x7 =L= 10.7545020354713; e3.. log(1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144*x4) + 1.2689544013438*x1/(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002*x4) + x2/(1.55190688128384*x1 + x2 + 0.696676834276998* x3 + 1.27289874839144*x4) + 0.176307940228365*x3/(0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436*x4) + 0.928335072476283*x4/( 0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4) + 2696.24885600287/(226.232 + x5) - x7 =L= 10.3803549837107; e4.. log(0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436* x4) + 0.696334182309743*x1/(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002*x4) + 0.696676834276998*x2/(1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144*x4) + x3/(0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436*x4) + 0.308103094315467* x4/(0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4) + 3643.31361767678/(239.726 + x5) - x7 =L= 12.9738026256517; e5.. log(0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4) + 0.590071729272002*x1/(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002*x4) + 1.27289874839144*x2/(1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144*x4) + 0.187999658986436*x3/( 0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436*x4) + x4/(0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4) + 2755.64173589155/(219.161 + x5) - x7 =L= 10.2081676704566; e6.. (-log(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002* x4)) - (x1/(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002*x4) + 1.55190688128384*x2/(1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144*x4) + 0.767395887387844*x3/( 0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436*x4) + 0.989870205661735*x4/(0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4)) - 2787.49800065313/(229.664 + x5) - x7 =L= -10.7545020354713; e7.. (-log(1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144* x4)) - (1.2689544013438*x1/(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002*x4) + x2/(1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144*x4) + 0.176307940228365*x3/( 0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436*x4) + 0.928335072476283*x4/(0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4)) - 2696.24885600287/(226.232 + x5) - x7 =L= -10.3803549837107; e8.. (-log(0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436 *x4)) - (0.696334182309743*x1/(x1 + 1.2689544013438*x2 + 0.696334182309743 *x3 + 0.590071729272002*x4) + 0.696676834276998*x2/(1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144*x4) + x3/(0.767395887387844* x1 + 0.176307940228365*x2 + x3 + 0.187999658986436*x4) + 0.308103094315467 *x4/(0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4)) - 3643.31361767678/(239.726 + x5) - x7 =L= -12.9738026256517; e9.. (-log(0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4)) - (0.590071729272002*x1/(x1 + 1.2689544013438*x2 + 0.696334182309743*x3 + 0.590071729272002*x4) + 1.27289874839144*x2/( 1.55190688128384*x1 + x2 + 0.696676834276998*x3 + 1.27289874839144*x4) + 0.187999658986436*x3/(0.767395887387844*x1 + 0.176307940228365*x2 + x3 + 0.187999658986436*x4) + x4/(0.989870205661735*x1 + 0.928335072476283*x2 + 0.308103094315467*x3 + x4)) - 2755.64173589155/(219.161 + x5) - x7 =L= -10.2081676704566; e10.. x1 + x2 + x3 + x4 =E= 1; * set non-default bounds x1.lo = 1E-6; x1.up = 1; x2.lo = 1E-6; x2.up = 1; x3.lo = 1E-6; x3.up = 1; x4.lo = 1E-6; x4.up = 1; x5.lo = 20; x5.up = 80; * set non-default levels x1.l = 0.295; x2.l = 0.148; x3.l = 0.463; x4.l = 0.094; x5.l = 57.154; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91