MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex14_2_4
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -0.00000000 (ANTIGONE) -0.00000000 (BARON) 0.00000000 (COUENNE) 0.00000000 (LINDO) 0.00000000 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. |
Sourceⓘ | Test Problem ex14.2.4 of Chapter 14 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 5 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 4 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 7 |
#Linear Constraintsⓘ | 1 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 6 |
Operands in Gen. Nonlin. Functionsⓘ | div mul sqr |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 33 |
#Nonlinear Nonzeros in Jacobianⓘ | 24 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 10 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 4 |
#Blocks in Hessian of Lagrangianⓘ | 2 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 9.1052e-02 |
Maximal coefficientⓘ | 3.9849e+03 |
Infeasibility of initial pointⓘ | 0.001683 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 8 2 0 6 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 6 6 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 35 11 24 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,objvar,x6; Positive Variables x6; Equations e1,e2,e3,e4,e5,e6,e7,e8; e1.. objvar - x6 =E= 0; e2.. (0.549337520233386*x2 + 1.1263896788319*x3)/(x1 + 0.816722116903399*x2 + 0.538540530229217*x3) + 0.0910522583583458*x2/(0.972203312166101*x1 + x2 + 0.394821041898112*x3) - 0.273994101407968*x3/(1.07810138009609*x1 + 0.707289137797622*x2 + x3) - (x1*(0.549337520233386*x2 + 1.1263896788319* x3)/sqr(x1 + 0.816722116903399*x2 + 0.538540530229217*x3) + 0.972203312166101*x2*(0.0910522583583458*x1 + 1.03765878646318*x3)/sqr( 0.972203312166101*x1 + x2 + 0.394821041898112*x3) + 1.07810138009609*x3*( 0.692718766203089*x2 - 0.273994101407968*x1)/sqr(1.07810138009609*x1 + 0.707289137797622*x2 + x3)) - 3667.70490156687/(226.184 + x4) - x6 =L= -12.0457123581059; e3.. (0.0910522583583458*x1 + 1.03765878646318*x3)/(0.972203312166101*x1 + x2 + 0.394821041898112*x3) + 0.549337520233386*x1/(x1 + 0.816722116903399*x2 + 0.538540530229217*x3) + 0.692718766203089*x3/(1.07810138009609*x1 + 0.707289137797622*x2 + x3) - (0.816722116903399*x1*(0.549337520233386*x2 + 1.1263896788319*x3)/sqr(x1 + 0.816722116903399*x2 + 0.538540530229217* x3) + x2*(0.0910522583583458*x1 + 1.03765878646318*x3)/sqr( 0.972203312166101*x1 + x2 + 0.394821041898112*x3) + 0.707289137797622*x3*( 0.692718766203089*x2 - 0.273994101407968*x1)/sqr(1.07810138009609*x1 + 0.707289137797622*x2 + x3)) - 2904.34268119711/(221.969 + x4) - x6 =L= -9.63112952618865; e4.. (0.692718766203089*x2 - 0.273994101407968*x1)/(1.07810138009609*x1 + 0.707289137797622*x2 + x3) + 1.1263896788319*x1/(x1 + 0.816722116903399*x2 + 0.538540530229217*x3) + 1.03765878646318*x2/(0.972203312166101*x1 + x2 + 0.394821041898112*x3) - (0.538540530229217*x1*(0.549337520233386*x2 + 1.1263896788319*x3)/sqr(x1 + 0.816722116903399*x2 + 0.538540530229217*x3) + 0.394821041898112*x2*(0.0910522583583458*x1 + 1.03765878646318*x3)/sqr( 0.972203312166101*x1 + x2 + 0.394821041898112*x3) + x3*(0.692718766203089* x2 - 0.273994101407968*x1)/sqr(1.07810138009609*x1 + 0.707289137797622*x2 + x3)) - 3984.92283948829/(233.426 + x4) - x6 =L= -11.9515596536534; e5.. (-(0.549337520233386*x2 + 1.1263896788319*x3)/(x1 + 0.816722116903399*x2 + 0.538540530229217*x3)) - (0.0910522583583458*x2/(0.972203312166101*x1 + x2 + 0.394821041898112*x3) - 0.273994101407968*x3/(1.07810138009609*x1 + 0.707289137797622*x2 + x3)) + x1*(0.549337520233386*x2 + 1.1263896788319*x3)/sqr(x1 + 0.816722116903399*x2 + 0.538540530229217*x3) + 0.972203312166101*x2*(0.0910522583583458*x1 + 1.03765878646318*x3)/sqr( 0.972203312166101*x1 + x2 + 0.394821041898112*x3) + 1.07810138009609*x3*( 0.692718766203089*x2 - 0.273994101407968*x1)/sqr(1.07810138009609*x1 + 0.707289137797622*x2 + x3) + 3667.70490156687/(226.184 + x4) - x6 =L= 12.0457123581059; e6.. (-(0.0910522583583458*x1 + 1.03765878646318*x3)/(0.972203312166101*x1 + x2 + 0.394821041898112*x3)) - (0.549337520233386*x1/(x1 + 0.816722116903399* x2 + 0.538540530229217*x3) + 0.692718766203089*x3/(1.07810138009609*x1 + 0.707289137797622*x2 + x3)) + 0.816722116903399*x1*(0.549337520233386*x2 + 1.1263896788319*x3)/sqr(x1 + 0.816722116903399*x2 + 0.538540530229217* x3) + x2*(0.0910522583583458*x1 + 1.03765878646318*x3)/sqr( 0.972203312166101*x1 + x2 + 0.394821041898112*x3) + 0.707289137797622*x3*( 0.692718766203089*x2 - 0.273994101407968*x1)/sqr(1.07810138009609*x1 + 0.707289137797622*x2 + x3) + 2904.34268119711/(221.969 + x4) - x6 =L= 9.63112952618865; e7.. (-(0.692718766203089*x2 - 0.273994101407968*x1)/(1.07810138009609*x1 + 0.707289137797622*x2 + x3)) - (1.1263896788319*x1/(x1 + 0.816722116903399* x2 + 0.538540530229217*x3) + 1.03765878646318*x2/(0.972203312166101*x1 + x2 + 0.394821041898112*x3)) + 0.538540530229217*x1*(0.549337520233386*x2 + 1.1263896788319*x3)/sqr(x1 + 0.816722116903399*x2 + 0.538540530229217* x3) + 0.394821041898112*x2*(0.0910522583583458*x1 + 1.03765878646318*x3)/ sqr(0.972203312166101*x1 + x2 + 0.394821041898112*x3) + x3*( 0.692718766203089*x2 - 0.273994101407968*x1)/sqr(1.07810138009609*x1 + 0.707289137797622*x2 + x3) + 3984.92283948829/(233.426 + x4) - x6 =L= 11.9515596536534; e8.. x1 + x2 + x3 =E= 1; * set non-default bounds x1.lo = 1E-6; x1.up = 1; x2.lo = 1E-6; x2.up = 1; x3.lo = 1E-6; x3.up = 1; x4.lo = 40; x4.up = 90; * set non-default levels x1.l = 0.187; x2.l = 0.56; x3.l = 0.253; x4.l = 72.957; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91