MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex14_2_7
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -0.00000000 (ANTIGONE) -0.00000000 (BARON) 0.00000000 (COUENNE) 0.00000000 (LINDO) 0.00000000 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. |
Sourceⓘ | Test Problem ex14.2.7 of Chapter 14 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 6 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 5 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 9 |
#Linear Constraintsⓘ | 1 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 8 |
Operands in Gen. Nonlin. Functionsⓘ | div log |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 52 |
#Nonlinear Nonzeros in Jacobianⓘ | 40 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 17 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 5 |
#Blocks in Hessian of Lagrangianⓘ | 2 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 4 |
Average blocksize in Hessian of Lagrangianⓘ | 2.5 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.2811e-02 |
Maximal coefficientⓘ | 3.8040e+03 |
Infeasibility of initial pointⓘ | 0.001152 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 10 2 0 8 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 7 7 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 54 14 40 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,objvar,x7; Positive Variables x7; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10; e1.. objvar - x7 =E= 0; e2.. 8.85*log(2.11*x1 + 3.97*x2 + 3.19*x3 + 4.5*x4) - 9.85*log(1.97*x1 + 3.01* x2 + 2.4*x3 + 3.86*x4) - (3.8613*x2 - 0.865100000000001*x1 + 3.7136*x3 - 0.632999999999999*x4)/(2.11*x1 + 3.97*x2 + 3.19*x3 + 4.5*x4) - 0.92*log( 0.92*x1 + 0.074630773041249*x2 + 0.120222883700913*x3 + 0.161199992780481* x4) + 0.92*log(0.92*x1 + 3.01*x2 + 2.4*x3 + 3.86*x4) - 0.92*(0.92*x1/(0.92 *x1 + 0.074630773041249*x2 + 0.120222883700913*x3 + 0.161199992780481*x4) + 5.42978509857797*x2/(1.65960208993081*x1 + 3.01*x2 + 2.91963915785291* x3 + 1.70144966342223*x4) + 3.53361528312402*x3/(1.35455252519754*x1 + 1.86011323009376*x2 + 2.4*x3 + 2.64991431773289*x4) + 5.92791255201582*x4/ (1.41287034918512*x1 + 5.85662897318878*x2 + 2.5957281029371*x3 + 3.86*x4) ) - 3803.98/(231.47 + x5) - x7 =L= -12.8590236275375; e3.. 14.05*log(2.11*x1 + 3.97*x2 + 3.19*x3 + 4.5*x4) - 15.05*log(1.97*x1 + 3.01 *x2 + 2.4*x3 + 3.86*x4) - (7.26510000000001*x2 - 1.6277*x1 + 6.9872*x3 - 1.191*x4)/(2.11*x1 + 3.97*x2 + 3.19*x3 + 4.5*x4) - 3.01*log( 1.65960208993081*x1 + 3.01*x2 + 2.91963915785291*x3 + 1.70144966342223*x4) + 3.01*log(0.92*x1 + 3.01*x2 + 2.4*x3 + 3.86*x4) - 3.01*( 0.0228107346172588*x1/(0.92*x1 + 0.074630773041249*x2 + 0.120222883700913* x3 + 0.161199992780481*x4) + 3.01*x2/(1.65960208993081*x1 + 3.01*x2 + 2.91963915785291*x3 + 1.70144966342223*x4) + 1.48314676153655*x3/( 1.35455252519754*x1 + 1.86011323009376*x2 + 2.4*x3 + 2.64991431773289*x4) + 7.51049429784342*x4/(1.41287034918512*x1 + 5.85662897318878*x2 + 2.5957281029371*x3 + 3.86*x4)) - 2735.58621973158/(226.276 + x5) - x7 =L= -11.2296864040814; e4.. 11*log(2.11*x1 + 3.97*x2 + 3.19*x3 + 4.5*x4) - 12*log(1.97*x1 + 3.01*x2 + 2.4*x3 + 3.86*x4) - (5.83770000000001*x2 - 1.3079*x1 + 5.6144*x3 - 0.956999999999998*x4)/(2.11*x1 + 3.97*x2 + 3.19*x3 + 4.5*x4) - 2.4*log( 1.35455252519754*x1 + 1.86011323009376*x2 + 2.4*x3 + 2.64991431773289*x4) + 2.4*log(0.92*x1 + 3.01*x2 + 2.4*x3 + 3.86*x4) - 2.4*(0.0460854387520165 *x1/(0.92*x1 + 0.074630773041249*x2 + 0.120222883700913*x3 + 0.161199992780481*x4) + 3.66171411047386*x2/(1.65960208993081*x1 + 3.01*x2 + 2.91963915785291*x3 + 1.70144966342223*x4) + 2.4*x3/(1.35455252519754* x1 + 1.86011323009376*x2 + 2.4*x3 + 2.64991431773289*x4) + 4.17479603222384*x4/(1.41287034918512*x1 + 5.85662897318878*x2 + 2.5957281029371*x3 + 3.86*x4)) - 2788.51/(220.79 + x5) - x7 =L= -11.1728763302021; e5.. 18.3*log(2.11*x1 + 3.97*x2 + 3.19*x3 + 4.5*x4) - 19.3*log(1.97*x1 + 3.01* x2 + 2.4*x3 + 3.86*x4) - (8.23500000000001*x2 - 1.845*x1 + 7.92*x3 - 1.35* x4)/(2.11*x1 + 3.97*x2 + 3.19*x3 + 4.5*x4) - 3.86*log(1.41287034918512*x1 + 5.85662897318878*x2 + 2.5957281029371*x3 + 3.86*x4) + 3.86*log(0.92*x1 + 3.01*x2 + 2.4*x3 + 3.86*x4) - 3.86*(0.0384207236678868*x1/(0.92*x1 + 0.074630773041249*x2 + 0.120222883700913*x3 + 0.161199992780481*x4) + 1.32677810541474*x2/(1.65960208993081*x1 + 3.01*x2 + 2.91963915785291*x3 + 1.70144966342223*x4) + 1.64761511983392*x3/(1.35455252519754*x1 + 1.86011323009376*x2 + 2.4*x3 + 2.64991431773289*x4) + 3.86*x4/( 1.41287034918512*x1 + 5.85662897318878*x2 + 2.5957281029371*x3 + 3.86*x4)) - 2739.24733002944/(226.28 + x5) - x7 =L= -11.3821403387577; e6.. 9.85*log(1.97*x1 + 3.01*x2 + 2.4*x3 + 3.86*x4) - 8.85*log(2.11*x1 + 3.97* x2 + 3.19*x3 + 4.5*x4) + (3.8613*x2 - 0.865100000000001*x1 + 3.7136*x3 - 0.632999999999999*x4)/(2.11*x1 + 3.97*x2 + 3.19*x3 + 4.5*x4) + 0.92*log( 0.92*x1 + 0.074630773041249*x2 + 0.120222883700913*x3 + 0.161199992780481* x4) - 0.92*log(0.92*x1 + 3.01*x2 + 2.4*x3 + 3.86*x4) + 0.92*(0.92*x1/(0.92 *x1 + 0.074630773041249*x2 + 0.120222883700913*x3 + 0.161199992780481*x4) + 5.42978509857797*x2/(1.65960208993081*x1 + 3.01*x2 + 2.91963915785291* x3 + 1.70144966342223*x4) + 3.53361528312402*x3/(1.35455252519754*x1 + 1.86011323009376*x2 + 2.4*x3 + 2.64991431773289*x4) + 5.92791255201582*x4/ (1.41287034918512*x1 + 5.85662897318878*x2 + 2.5957281029371*x3 + 3.86*x4) ) + 3803.98/(231.47 + x5) - x7 =L= 12.8590236275375; e7.. 15.05*log(1.97*x1 + 3.01*x2 + 2.4*x3 + 3.86*x4) - 14.05*log(2.11*x1 + 3.97 *x2 + 3.19*x3 + 4.5*x4) + (7.26510000000001*x2 - 1.6277*x1 + 6.9872*x3 - 1.191*x4)/(2.11*x1 + 3.97*x2 + 3.19*x3 + 4.5*x4) + 3.01*log( 1.65960208993081*x1 + 3.01*x2 + 2.91963915785291*x3 + 1.70144966342223*x4) - 3.01*log(0.92*x1 + 3.01*x2 + 2.4*x3 + 3.86*x4) + 3.01*( 0.0228107346172588*x1/(0.92*x1 + 0.074630773041249*x2 + 0.120222883700913* x3 + 0.161199992780481*x4) + 3.01*x2/(1.65960208993081*x1 + 3.01*x2 + 2.91963915785291*x3 + 1.70144966342223*x4) + 1.48314676153655*x3/( 1.35455252519754*x1 + 1.86011323009376*x2 + 2.4*x3 + 2.64991431773289*x4) + 7.51049429784342*x4/(1.41287034918512*x1 + 5.85662897318878*x2 + 2.5957281029371*x3 + 3.86*x4)) + 2735.58621973158/(226.276 + x5) - x7 =L= 11.2296864040814; e8.. 12*log(1.97*x1 + 3.01*x2 + 2.4*x3 + 3.86*x4) - 11*log(2.11*x1 + 3.97*x2 + 3.19*x3 + 4.5*x4) + (5.83770000000001*x2 - 1.3079*x1 + 5.6144*x3 - 0.956999999999998*x4)/(2.11*x1 + 3.97*x2 + 3.19*x3 + 4.5*x4) + 2.4*log( 1.35455252519754*x1 + 1.86011323009376*x2 + 2.4*x3 + 2.64991431773289*x4) - 2.4*log(0.92*x1 + 3.01*x2 + 2.4*x3 + 3.86*x4) + 2.4*(0.0460854387520165 *x1/(0.92*x1 + 0.074630773041249*x2 + 0.120222883700913*x3 + 0.161199992780481*x4) + 3.66171411047386*x2/(1.65960208993081*x1 + 3.01*x2 + 2.91963915785291*x3 + 1.70144966342223*x4) + 2.4*x3/(1.35455252519754* x1 + 1.86011323009376*x2 + 2.4*x3 + 2.64991431773289*x4) + 4.17479603222384*x4/(1.41287034918512*x1 + 5.85662897318878*x2 + 2.5957281029371*x3 + 3.86*x4)) + 2788.51/(220.79 + x5) - x7 =L= 11.1728763302021; e9.. 19.3*log(1.97*x1 + 3.01*x2 + 2.4*x3 + 3.86*x4) - 18.3*log(2.11*x1 + 3.97* x2 + 3.19*x3 + 4.5*x4) + (8.23500000000001*x2 - 1.845*x1 + 7.92*x3 - 1.35* x4)/(2.11*x1 + 3.97*x2 + 3.19*x3 + 4.5*x4) + 3.86*log(1.41287034918512*x1 + 5.85662897318878*x2 + 2.5957281029371*x3 + 3.86*x4) - 3.86*log(0.92*x1 + 3.01*x2 + 2.4*x3 + 3.86*x4) + 3.86*(0.0384207236678868*x1/(0.92*x1 + 0.074630773041249*x2 + 0.120222883700913*x3 + 0.161199992780481*x4) + 1.32677810541474*x2/(1.65960208993081*x1 + 3.01*x2 + 2.91963915785291*x3 + 1.70144966342223*x4) + 1.64761511983392*x3/(1.35455252519754*x1 + 1.86011323009376*x2 + 2.4*x3 + 2.64991431773289*x4) + 3.86*x4/( 1.41287034918512*x1 + 5.85662897318878*x2 + 2.5957281029371*x3 + 3.86*x4)) + 2739.24733002944/(226.28 + x5) - x7 =L= 11.3821403387577; e10.. x1 + x2 + x3 + x4 =E= 1; * set non-default bounds x1.lo = 1E-6; x1.up = 1; x2.lo = 1E-6; x2.up = 1; x3.lo = 1E-6; x3.up = 1; x4.lo = 1E-6; x4.up = 1; x5.lo = 40; x5.up = 90; * set non-default levels x1.l = 0.322; x2.l = 0.322; x3.l = 0.222; x4.l = 0.133; x5.l = 63.558; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91