MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance ex2_1_7

Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
-4150.41013400 p1 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
-4150.41013800 (ANTIGONE)
-4150.41014800 (BARON)
-4150.41029200 (COUENNE)
-4150.41013400 (CPLEX)
-4150.41013400 (GUROBI)
-4150.41013400 (LINDO)
-4150.41013500 (SCIP)
References Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999.
Source Test Problem ex2.1.7 of Chapter 2 of Floudas e.a. handbook
Added to library 31 Jul 2001
Problem type QP
#Variables 20
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 20
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type quadratic
Objective curvature concave
#Nonzeros in Objective 20
#Nonlinear Nonzeros in Objective 20
#Constraints 10
#Linear Constraints 10
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature linear
#Nonzeros in Jacobian 164
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 20
#Nonzeros in Diagonal of Hessian of Lagrangian 20
#Blocks in Hessian of Lagrangian 20
Minimal blocksize in Hessian of Lagrangian 1
Maximal blocksize in Hessian of Lagrangian 1
Average blocksize in Hessian of Lagrangian 1.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 5.0000e-01
Maximal coefficient 2.0000e+01
Infeasibility of initial point 0.01396
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         11        1        0       10        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         21       21        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        185      165       20        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,objvar;

Positive Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
          ,x18,x19,x20;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11;


e1.. 0.5*(sqr((-2) + x1) + 2*sqr((-2) + x2) + 3*sqr((-2) + x3) + 4*sqr((-2) + 
     x4) + 5*sqr((-2) + x5) + 6*sqr((-2) + x6) + 7*sqr((-2) + x7) + 8*sqr((-2)
      + x8) + 9*sqr((-2) + x9) + 10*sqr((-2) + x10) + 11*sqr((-2) + x11) + 12*
     sqr((-2) + x12) + 13*sqr((-2) + x13) + 14*sqr((-2) + x14) + 15*sqr((-2) + 
     x15) + 16*sqr((-2) + x16) + 17*sqr((-2) + x17) + 18*sqr((-2) + x18) + 19*
     sqr((-2) + x19) + 20*sqr((-2) + x20)) + objvar =E= 0;

e2..  - 3*x1 + 7*x2 - 5*x4 + x5 + x6 + 2*x8 - x9 - x10 - 9*x11 + 3*x12 + 5*x13
      + x16 + 7*x17 - 7*x18 - 4*x19 - 6*x20 =L= -5;

e3..    7*x1 - 5*x3 + x4 + x5 + 2*x7 - x8 - x9 - 9*x10 + 3*x11 + 5*x12 + x15
      + 7*x16 - 7*x17 - 4*x18 - 6*x19 - 3*x20 =L= 2;

e4..  - 5*x2 + x3 + x4 + 2*x6 - x7 - x8 - 9*x9 + 3*x10 + 5*x11 + x14 + 7*x15
      - 7*x16 - 4*x17 - 6*x18 - 3*x19 + 7*x20 =L= -1;

e5..  - 5*x1 + x2 + x3 + 2*x5 - x6 - x7 - 9*x8 + 3*x9 + 5*x10 + x13 + 7*x14
      - 7*x15 - 4*x16 - 6*x17 - 3*x18 + 7*x19 =L= -3;

e6..    x1 + x2 + 2*x4 - x5 - x6 - 9*x7 + 3*x8 + 5*x9 + x12 + 7*x13 - 7*x14
      - 4*x15 - 6*x16 - 3*x17 + 7*x18 - 5*x20 =L= 5;

e7..    x1 + 2*x3 - x4 - x5 - 9*x6 + 3*x7 + 5*x8 + x11 + 7*x12 - 7*x13 - 4*x14
      - 6*x15 - 3*x16 + 7*x17 - 5*x19 + x20 =L= 4;

e8..    2*x2 - x3 - x4 - 9*x5 + 3*x6 + 5*x7 + x10 + 7*x11 - 7*x12 - 4*x13
      - 6*x14 - 3*x15 + 7*x16 - 5*x18 + x19 + x20 =L= -1;

e9..    2*x1 - x2 - x3 - 9*x4 + 3*x5 + 5*x6 + x9 + 7*x10 - 7*x11 - 4*x12
      - 6*x13 - 3*x14 + 7*x15 - 5*x17 + x18 + x19 =L= 0;

e10..  - x1 - x2 - 9*x3 + 3*x4 + 5*x5 + x8 + 7*x9 - 7*x10 - 4*x11 - 6*x12
       - 3*x13 + 7*x14 - 5*x16 + x17 + x18 + 2*x20 =L= 9;

e11..    x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13
       + x14 + x15 + x16 + x17 + x18 + x19 + x20 =L= 40;

* set non-default levels
x3.l = 1.04289;
x11.l = 1.74674;
x13.l = 0.43147;
x16.l = 4.43305;
x18.l = 15.85893;
x20.l = 16.4889;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0