MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex4_1_2
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -663.50009730 (ANTIGONE) -663.50009730 (BARON) -663.50071840 (COUENNE) -663.50009660 (LINDO) -663.50009720 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Moore, R E, Methods and Applications of Interval Analysis, Prentice Hall, Englewood Cliffs, NJ, 1979. |
Sourceⓘ | Test Problem ex4.1.2 of Chapter 4 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 1 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 1 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | polynomial |
Objective curvatureⓘ | nonconvex |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 1 |
#Constraintsⓘ | 0 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 0 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 1 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 1 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0638e-01 |
Maximal coefficientⓘ | 5.0000e+02 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 1 1 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 2 2 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 2 1 1 0 * * Solve m using NLP minimizing objvar; Variables x1,objvar; Equations e1; e1.. -(2.5*sqr(x1) - 500*x1 + 1.666666666*POWER(x1,3) + 1.25*POWER(x1,4) + POWER(x1,5) + 0.8333333*POWER(x1,6) + 0.714285714*POWER(x1,7) + 0.625* POWER(x1,8) + 0.555555555*POWER(x1,9) + POWER(x1,10) - 43.6363636*POWER(x1 ,11) + 0.41666666*POWER(x1,12) + 0.384615384*POWER(x1,13) + 0.357142857* POWER(x1,14) + 0.3333333*POWER(x1,15) + 0.3125*POWER(x1,16) + 0.294117647* POWER(x1,17) + 0.277777777*POWER(x1,18) + 0.263157894*POWER(x1,19) + 0.25* POWER(x1,20) + 0.238095238*POWER(x1,21) + 0.227272727*POWER(x1,22) + 0.217391304*POWER(x1,23) + 0.208333333*POWER(x1,24) + 0.2*POWER(x1,25) + 0.192307692*POWER(x1,26) + 0.185185185*POWER(x1,27) + 0.178571428*POWER(x1 ,28) + 0.344827586*POWER(x1,29) + 0.6666666*POWER(x1,30) - 15.48387097* POWER(x1,31) + 0.15625*POWER(x1,32) + 0.1515151*POWER(x1,33) + 0.14705882* POWER(x1,34) + 0.14285712*POWER(x1,35) + 0.138888888*POWER(x1,36) + 0.135135135*POWER(x1,37) + 0.131578947*POWER(x1,38) + 0.128205128*POWER(x1 ,39) + 0.125*POWER(x1,40) + 0.121951219*POWER(x1,41) + 0.119047619*POWER( x1,42) + 0.116279069*POWER(x1,43) + 0.113636363*POWER(x1,44) + 0.1111111* POWER(x1,45) + 0.108695652*POWER(x1,46) + 0.106382978*POWER(x1,47) + 0.208333333*POWER(x1,48) + 0.408163265*POWER(x1,49) + 0.8*POWER(x1,50)) + objvar =E= 0; * set non-default bounds x1.lo = 1; x1.up = 2; * set non-default levels x1.l = 1.0911; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91