MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex5_2_2_case3
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -750.00000080 (ANTIGONE) -750.00000080 (BARON) -750.00000000 (COUENNE) -750.00000000 (GUROBI) -750.00000000 (LINDO) -750.00000000 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Haverly, C A, Studies of the Behavior of Recursion for the Pooling Problem, ACM SIGMAP Bull, 25, 1978, 19-28. |
Sourceⓘ | Test Problem ex5.2.2_case3 of Chapter 5 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | QCP |
#Variablesⓘ | 9 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 3 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 6 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 6 |
#Linear Constraintsⓘ | 3 |
#Quadratic Constraintsⓘ | 3 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 23 |
#Nonlinear Nonzeros in Jacobianⓘ | 7 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 4 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 3 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 3.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 1.5000e+01 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 7 5 0 2 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 10 10 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 30 23 7 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9; Equations e1,e2,e3,e4,e5,e6,e7; e1.. - 9*x1 - 15*x2 + 6*x3 + 13*x4 + 10*x5 + 10*x6 - objvar =E= 0; e2.. - x3 - x4 + x8 + x9 =E= 0; e3.. x1 - x5 - x8 =E= 0; e4.. x2 - x6 - x9 =E= 0; e5.. x7*x8 - 2.5*x1 + 2*x5 =L= 0; e6.. x7*x9 - 1.5*x2 + 2*x6 =L= 0; e7.. x7*x8 + x7*x9 - 3*x3 - x4 =E= 0; * set non-default bounds x1.up = 100; x2.up = 200; x3.up = 500; x4.up = 500; x5.up = 500; x6.up = 500; x7.up = 500; x8.up = 500; x9.up = 500; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91