MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex5_2_4
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -450.00000050 (ANTIGONE) -450.00000090 (BARON) -450.00026250 (COUENNE) -450.00000000 (GUROBI) -450.00000000 (LINDO) -450.00000080 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Ben-Tal, A, Eiger, G, and Gershovitz, V, Global Minimization by Reducing the Duality Gap, Mathematical Programming, 63:1, 1994, 193-212. |
Sourceⓘ | Test Problem ex5.2.4 of Chapter 5 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | QCQP |
#Variablesⓘ | 7 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 5 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 7 |
#Nonlinear Nonzeros in Objectiveⓘ | 5 |
#Constraintsⓘ | 6 |
#Linear Constraintsⓘ | 3 |
#Quadratic Constraintsⓘ | 3 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 20 |
#Nonlinear Nonzeros in Jacobianⓘ | 11 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 12 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 5 |
Maximal blocksize in Hessian of Lagrangianⓘ | 5 |
Average blocksize in Hessian of Lagrangianⓘ | 5.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.0000e-01 |
Maximal coefficientⓘ | 1.6000e+01 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 7 2 0 5 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 8 8 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 28 12 16 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7; Equations e1,e2,e3,e4,e5,e6,e7; e1.. -((9 - 6*x1 - 16*x2 - 15*x3)*x4 + (15 - 6*x1 - 16*x2 - 15*x3)*x5) + x6 - 5*x7 - objvar =E= 0; e2.. x3*x4 + x3*x5 =L= 50; e3.. x4 + x6 =L= 100; e4.. x5 + x7 =L= 200; e5.. (-2.5 + 3*x1 + x2 + x3)*x4 - 0.5*x6 =L= 0; e6.. (-1.5 + 3*x1 + x2 + x3)*x5 + 0.5*x7 =L= 0; e7.. x1 + x2 + x3 =E= 1; * set non-default bounds x1.up = 1; x2.up = 1; x3.up = 1; x4.up = 100; x5.up = 200; x6.up = 100; x7.up = 200; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91