MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance ex5_4_2

Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
7512.23014500 p1 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
7512.23011500 (ANTIGONE)
7512.23013700 (BARON)
7512.23014200 (COUENNE)
7512.23014500 (GUROBI)
7512.23014400 (LINDO)
7512.23014400 (SCIP)
References Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999.
Avriel, M and Williams, A C, An Extension of Geometric Programming with Applications in Engineering Optimization, Journal of Engineering Mathematics, 5:2, 1971, 187-194.
Source Test Problem ex5.4.2 of Chapter 5 of Floudas e.a. handbook
Added to library 31 Jul 2001
Problem type QCP
#Variables 8
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 8
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 3
#Nonlinear Nonzeros in Objective 0
#Constraints 6
#Linear Constraints 3
#Quadratic Constraints 3
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 17
#Nonlinear Nonzeros in Jacobian 8
#Nonzeros in (Upper-Left) Hessian of Lagrangian 10
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 3
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 3
Average blocksize in Hessian of Lagrangian 2.666667
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e+00
Maximal coefficient 2.5000e+03
Infeasibility of initial point 1.225e+06
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          7        1        0        6        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          9        9        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         21       13        8        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,objvar;

Equations  e1,e2,e3,e4,e5,e6,e7;


e1..  - x1 - x2 - x3 + objvar =E= 0;

e2..    x4 + x6 =L= 400;

e3..  - x4 + x5 + x7 =L= 300;

e4..  - x5 + x8 =L= 100;

e5.. x1 - x1*x6 + 833.333333333333*x4 =L= 83333.3333333333;

e6.. x2*x4 - x2*x7 - 1250*x4 + 1250*x5 =L= 0;

e7.. x3*x5 - x3*x8 - 2500*x5 =L= -1250000;

* set non-default bounds
x1.lo = 100; x1.up = 10000;
x2.lo = 1000; x2.up = 10000;
x3.lo = 1000; x3.up = 10000;
x4.lo = 10; x4.up = 1000;
x5.lo = 10; x5.up = 1000;
x6.lo = 10; x6.up = 1000;
x7.lo = 10; x7.up = 1000;
x8.lo = 10; x8.up = 1000;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0