MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex6_1_1
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -0.02019831 (ANTIGONE) -0.02020129 (BARON) -0.02019831 (COUENNE) -0.02019831 (LINDO) -0.02020416 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. McDonald, C M and Floudas, C A, GLOPEQ: A New Computational Tool for the Phase and Chemical Equilibrium Problem, Computers and Chemical Engineering, 21:1, 1997, 1-23. Heidemann, R and Mandhane, J, Some Properties of the NRTL Equation in Correlating Liquid-Liquid Equilibrium Data, Chemical Engineering Science, 28:5, 1973, 1213-1221. |
Sourceⓘ | Test Problem ex6.1.1 of Chapter 6 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 8 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 8 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 8 |
#Nonlinear Nonzeros in Objectiveⓘ | 8 |
#Constraintsⓘ | 6 |
#Linear Constraintsⓘ | 2 |
#Quadratic Constraintsⓘ | 4 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | log mul |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 16 |
#Nonlinear Nonzeros in Jacobianⓘ | 12 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 24 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 4 |
#Blocks in Hessian of Lagrangianⓘ | 2 |
Minimal blocksize in Hessian of Lagrangianⓘ | 4 |
Maximal blocksize in Hessian of Lagrangianⓘ | 4 |
Average blocksize in Hessian of Lagrangianⓘ | 4.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.5904e-01 |
Maximal coefficientⓘ | 1.0000e+00 |
Infeasibility of initial pointⓘ | 1.11e-16 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 7 7 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 9 9 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 25 5 20 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9; Positive Variables x6,x7,x8,x9; Equations e1,e2,e3,e4,e5,e6,e7; e1.. -((log(x2) - log(x2 + x4))*x2 + (log(x4) - log(x2 + x4))*x4 + (log(x3) - log(x3 + x5))*x3 + (log(x5) - log(x3 + x5))*x5 + 0.925356626778358*x2*x8 + 0.746014540096753*x4*x6 + 0.925356626778358*x3*x9 + 0.746014540096753* x5*x7) + objvar =E= 0; e2.. x6*(x2 + 0.159040857374844*x4) - x2 =E= 0; e3.. x7*(x3 + 0.159040857374844*x5) - x3 =E= 0; e4.. x8*(0.307941026821595*x2 + x4) - x4 =E= 0; e5.. x9*(0.307941026821595*x3 + x5) - x5 =E= 0; e6.. x2 + x3 =E= 0.5; e7.. x4 + x5 =E= 0.5; * set non-default bounds x2.lo = 1E-7; x2.up = 0.5; x3.lo = 1E-7; x3.up = 0.5; x4.lo = 1E-7; x4.up = 0.5; x5.lo = 1E-7; x5.up = 0.5; * set non-default levels x2.l = 0.4993; x3.l = 0.0007; x4.l = 0.3441; x5.l = 0.1559; x6.l = 0.901221308981222; x7.l = 0.0274569351394739; x8.l = 0.691165161172019; x9.l = 0.998619236157215; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91