MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex6_2_10
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -3.05198213 (ANTIGONE) -3.65267227 (COUENNE) -3.05202448 (LINDO) -4.20104013 (SCIP) -1090.27489100 (SHOT) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. McDonald, C M and Floudas, C A, GLOPEQ: A New Computational Tool for the Phase and Chemical Equilibrium Problem, Computers and Chemical Engineering, 21:1, 1997, 1-23. Magnussen, T, Rasmussen, P, and Fredenslund, A, UNIFAC Parameter Table for Prediction of Liquid-Liquid Equilibria, Industrial and Engineering Chemistry Process Design and Development, 20:2, 1981, 331-339. |
Sourceⓘ | Test Problem ex6.2.10 of Chapter 6 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 6 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 6 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 6 |
#Nonlinear Nonzeros in Objectiveⓘ | 6 |
#Constraintsⓘ | 3 |
#Linear Constraintsⓘ | 3 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | div log mul |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 6 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 18 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
#Blocks in Hessian of Lagrangianⓘ | 2 |
Minimal blocksize in Hessian of Lagrangianⓘ | 3 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 3.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.1562e-01 |
Maximal coefficientⓘ | 2.5604e+01 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 4 4 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 7 7 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 13 7 6 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7; Equations e1,e2,e3,e4; e1.. -(log(2.1055*x2 + 3.1878*x4 + 0.92*x6)*(15.3261663216011*x2 + 23.2043471859416*x4 + 6.69678129464404*x6) - 2.46348749603266*x2 - 4.33155441248417*x4 - 0.626542690017204*x6 + 6.4661663216011*log(x2/( 2.1055*x2 + 3.1878*x4 + 0.92*x6))*x2 + 12.2043471859416*log(x4/(2.1055*x2 + 3.1878*x4 + 0.92*x6))*x4 + 0.696781294644034*log(x6/(2.1055*x2 + 3.1878 *x4 + 0.92*x6))*x6 + 9.86*log(x2/(1.972*x2 + 2.4*x4 + 1.4*x6))*x2 + 12* log(x4/(1.972*x2 + 2.4*x4 + 1.4*x6))*x4 + 7*log(x6/(1.972*x2 + 2.4*x4 + 1.4*x6))*x6 + log(1.972*x2 + 2.4*x4 + 1.4*x6)*(1.972*x2 + 2.4*x4 + 1.4*x6) + 1.972*log(x2/(1.972*x2 + 0.283910843616504*x4 + 3.02002220174195*x6))* x2 + 2.4*log(x4/(1.45991339466884*x2 + 2.4*x4 + 0.415073537580851*x6))*x4 + 1.4*log(x6/(0.602183324335333*x2 + 0.115623371371275*x4 + 1.4*x6))*x6 + log(2.1055*x3 + 3.1878*x5 + 0.92*x7)*(15.3261663216011*x3 + 23.2043471859416*x5 + 6.69678129464404*x7) - 2.46348749603266*x3 - 4.33155441248417*x5 - 0.626542690017204*x7 + 6.4661663216011*log(x3/( 2.1055*x3 + 3.1878*x5 + 0.92*x7))*x3 + 12.2043471859416*log(x5/(2.1055*x3 + 3.1878*x5 + 0.92*x7))*x5 + 0.696781294644034*log(x7/(2.1055*x3 + 3.1878 *x5 + 0.92*x7))*x7 + 9.86*log(x3/(1.972*x3 + 2.4*x5 + 1.4*x7))*x3 + 12* log(x5/(1.972*x3 + 2.4*x5 + 1.4*x7))*x5 + 7*log(x7/(1.972*x3 + 2.4*x5 + 1.4*x7))*x7 + log(1.972*x3 + 2.4*x5 + 1.4*x7)*(1.972*x3 + 2.4*x5 + 1.4*x7) + 1.972*log(x3/(1.972*x3 + 0.283910843616504*x5 + 3.02002220174195*x7))* x3 + 2.4*log(x5/(1.45991339466884*x3 + 2.4*x5 + 0.415073537580851*x7))*x5 + 1.4*log(x7/(0.602183324335333*x3 + 0.115623371371275*x5 + 1.4*x7))*x7 - 17.2981663216011*log(x2)*x2 - 25.6043471859416*log(x4)*x4 - 8.09678129464404*log(x6)*x6 - 17.2981663216011*log(x3)*x3 - 25.6043471859416*log(x5)*x5 - 8.09678129464404*log(x7)*x7) + objvar =E= 0; e2.. x2 + x3 =E= 0.2; e3.. x4 + x5 =E= 0.4; e4.. x6 + x7 =E= 0.4; * set non-default bounds x2.lo = 1E-7; x2.up = 0.2; x3.lo = 1E-7; x3.up = 0.2; x4.lo = 1E-7; x4.up = 0.4; x5.lo = 1E-7; x5.up = 0.4; x6.lo = 1E-7; x6.up = 0.4; x7.lo = 1E-7; x7.up = 0.4; * set non-default levels x2.l = 0.19863; x3.l = 0.00137; x4.l = 0.00428; x5.l = 0.39572; x6.l = 0.39922; x7.l = 0.00078; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91