MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex6_2_13
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -0.22496155 (ANTIGONE) -0.21623124 (BARON) -0.28177888 (COUENNE) -0.21687624 (LINDO) -0.27883568 (SCIP) -220.84725550 (SHOT) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. McDonald, C M and Floudas, C A, GLOPEQ: A New Computational Tool for the Phase and Chemical Equilibrium Problem, Computers and Chemical Engineering, 21:1, 1997, 1-23. Heidemann, R and Mandhane, J, Some Properties of the NRTL Equation in Correlating Liquid-Liquid Equilibrium Data, Chemical Engineering Science, 28:5, 1973, 1213-1221. |
Sourceⓘ | Test Problem ex6.2.13 of Chapter 6 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 6 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 6 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | nonconcave |
#Nonzeros in Objectiveⓘ | 6 |
#Nonlinear Nonzeros in Objectiveⓘ | 6 |
#Constraintsⓘ | 3 |
#Linear Constraintsⓘ | 3 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | div log mul |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 6 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 18 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
#Blocks in Hessian of Lagrangianⓘ | 2 |
Minimal blocksize in Hessian of Lagrangianⓘ | 3 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 3.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 4.8035e-01 |
Maximal coefficientⓘ | 6.0000e+00 |
Infeasibility of initial pointⓘ | 1.11e-16 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 4 4 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 7 7 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 13 7 6 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7; Equations e1,e2,e3,e4; e1.. -(log(x2/(3*x2 + 6*x4 + x6))*x2 + log(x4/(3*x2 + 6*x4 + x6))*x4 + log(x6/( 3*x2 + 6*x4 + x6))*x6 - 0.80323071133189*x2 + 1.79175946922805*x4 + 0.752006*x6 + log(3*x2 + 6*x4 + 1.6*x6)*(3*x2 + 6*x4 + 1.6*x6) + 2*log(x2/ (2.00000019368913*x2 + 4.64593*x4 + 0.480353*x6))*x2 + log(x2/( 1.00772874182154*x2 + 0.724703350369523*x4 + 0.947722362492017*x6))*x2 + 6 *log(x4/(3.36359157977228*x2 + 6*x4 + 1.13841069150863*x6))*x4 + 1.6*log( x6/(1.6359356134845*x2 + 3.39220996773471*x4 + 1.6*x6))*x6 + log(x3/(3*x3 + 6*x5 + x7))*x3 + log(x5/(3*x3 + 6*x5 + x7))*x5 + log(x7/(3*x3 + 6*x5 + x7))*x7 - 0.80323071133189*x3 + 1.79175946922805*x5 + 0.752006*x7 + log(3* x3 + 6*x5 + 1.6*x7)*(3*x3 + 6*x5 + 1.6*x7) + 2*log(x3/(2.00000019368913*x3 + 4.64593*x5 + 0.480353*x7))*x3 + log(x3/(1.00772874182154*x3 + 0.724703350369523*x5 + 0.947722362492017*x7))*x3 + 6*log(x5/( 3.36359157977228*x3 + 6*x5 + 1.13841069150863*x7))*x5 + 1.6*log(x7/( 1.6359356134845*x3 + 3.39220996773471*x5 + 1.6*x7))*x7 - 3*log(x2)*x2 - 6* log(x4)*x4 - 1.6*log(x6)*x6 - 3*log(x3)*x3 - 6*log(x5)*x5 - 1.6*log(x7)*x7 ) + objvar =E= 0; e2.. x2 + x3 =E= 0.08; e3.. x4 + x5 =E= 0.3; e4.. x6 + x7 =E= 0.62; * set non-default bounds x2.lo = 1E-7; x2.up = 0.08; x3.lo = 1E-7; x3.up = 0.08; x4.lo = 1E-7; x4.up = 0.3; x5.lo = 1E-7; x5.up = 0.3; x6.lo = 1E-7; x6.up = 0.62; x7.lo = 1E-7; x7.up = 0.62; * set non-default levels x2.l = 0.0739; x3.l = 0.0061; x4.l = 0.2773; x5.l = 0.0227; x6.l = 0.5731; x7.l = 0.0469; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91