MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex6_2_7
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -4.58704966 (ANTIGONE) -1.06726714 (BARON) -8.49978555 (COUENNE) -2.72829129 (LINDO) -1.49861775 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. McDonald, C M and Floudas, C A, GLOPEQ: A New Computational Tool for the Phase and Chemical Equilibrium Problem, Computers and Chemical Engineering, 21:1, 1997, 1-23. |
Sourceⓘ | Test Problem ex6.2.7 of Chapter 6 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 9 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 9 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 9 |
#Nonlinear Nonzeros in Objectiveⓘ | 9 |
#Constraintsⓘ | 3 |
#Linear Constraintsⓘ | 3 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | log mul |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 9 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 27 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 9 |
#Blocks in Hessian of Lagrangianⓘ | 3 |
Minimal blocksize in Hessian of Lagrangianⓘ | 3 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 3.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.9638e-02 |
Maximal coefficientⓘ | 4.5876e+01 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 4 4 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 10 10 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 19 10 9 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10; Equations e1,e2,e3,e4; e1.. -(log(2.4088*x2 + 8.8495*x5 + 2.0086*x8)*(10.4807341082197*x2 + 38.5043409542885*x5 + 8.73945638067505*x8) + 0.102582206615077*x2 - 4.55292602721008*x5 + 0.0196376909050935*x8 + 0.240734108219679*log(x2)*x2 + 2.64434095428848*log(x5)*x5 + 0.399456380675047*log(x8)*x8 - 0.240734108219679*log(2.4088*x2 + 8.8495*x5 + 2.0086*x8)*x2 - 2.64434095428848*log(2.4088*x2 + 8.8495*x5 + 2.0086*x8)*x5 - 0.399456380675047*log(2.4088*x2 + 8.8495*x5 + 2.0086*x8)*x8 + 11.24*log(x2 )*x2 + 36.86*log(x5)*x5 + 9.34*log(x8)*x8 - 11.24*log(2.248*x2 + 7.372*x5 + 1.868*x8)*x2 - 36.86*log(2.248*x2 + 7.372*x5 + 1.868*x8)*x5 - 9.34*log( 2.248*x2 + 7.372*x5 + 1.868*x8)*x8 + log(2.248*x2 + 7.372*x5 + 1.868*x8)*( 2.248*x2 + 7.372*x5 + 1.868*x8) + 2.248*log(x2)*x2 + 7.372*log(x5)*x5 + 1.868*log(x8)*x8 - 2.248*log(2.248*x2 + 5.82088173817021*x5 + 0.382446861901943*x8)*x2 - 7.372*log(0.972461133672523*x2 + 7.372*x5 + 1.1893141713454*x8)*x5 - 1.868*log(1.86752460515164*x2 + 2.61699842799583* x5 + 1.868*x8)*x8 + log(2.4088*x3 + 8.8495*x6 + 2.0086*x9)*( 10.4807341082197*x3 + 38.5043409542885*x6 + 8.73945638067505*x9) + 0.102582206615077*x3 - 4.55292602721008*x6 + 0.0196376909050935*x9 + 0.240734108219679*log(x3)*x3 + 2.64434095428848*log(x6)*x6 + 0.399456380675047*log(x9)*x9 - 0.240734108219679*log(2.4088*x3 + 8.8495*x6 + 2.0086*x9)*x3 - 2.64434095428848*log(2.4088*x3 + 8.8495*x6 + 2.0086*x9) *x6 - 0.399456380675047*log(2.4088*x3 + 8.8495*x6 + 2.0086*x9)*x9 + 11.24* log(x3)*x3 + 36.86*log(x6)*x6 + 9.34*log(x9)*x9 - 11.24*log(2.248*x3 + 7.372*x6 + 1.868*x9)*x3 - 36.86*log(2.248*x3 + 7.372*x6 + 1.868*x9)*x6 - 9.34*log(2.248*x3 + 7.372*x6 + 1.868*x9)*x9 + log(2.248*x3 + 7.372*x6 + 1.868*x9)*(2.248*x3 + 7.372*x6 + 1.868*x9) + 2.248*log(x3)*x3 + 7.372*log( x6)*x6 + 1.868*log(x9)*x9 - 2.248*log(2.248*x3 + 5.82088173817021*x6 + 0.382446861901943*x9)*x3 - 7.372*log(0.972461133672523*x3 + 7.372*x6 + 1.1893141713454*x9)*x6 - 1.868*log(1.86752460515164*x3 + 2.61699842799583* x6 + 1.868*x9)*x9 + log(2.4088*x4 + 8.8495*x7 + 2.0086*x10)*( 10.4807341082197*x4 + 38.5043409542885*x7 + 8.73945638067505*x10) + 0.102582206615077*x4 - 4.55292602721008*x7 + 0.0196376909050935*x10 + 0.240734108219679*log(x4)*x4 + 2.64434095428848*log(x7)*x7 + 0.399456380675047*log(x10)*x10 - 0.240734108219679*log(2.4088*x4 + 8.8495* x7 + 2.0086*x10)*x4 - 2.64434095428848*log(2.4088*x4 + 8.8495*x7 + 2.0086* x10)*x7 - 0.399456380675047*log(2.4088*x4 + 8.8495*x7 + 2.0086*x10)*x10 + 11.24*log(x4)*x4 + 36.86*log(x7)*x7 + 9.34*log(x10)*x10 - 11.24*log(2.248* x4 + 7.372*x7 + 1.868*x10)*x4 - 36.86*log(2.248*x4 + 7.372*x7 + 1.868*x10) *x7 - 9.34*log(2.248*x4 + 7.372*x7 + 1.868*x10)*x10 + log(2.248*x4 + 7.372 *x7 + 1.868*x10)*(2.248*x4 + 7.372*x7 + 1.868*x10) + 2.248*log(x4)*x4 + 7.372*log(x7)*x7 + 1.868*log(x10)*x10 - 2.248*log(2.248*x4 + 5.82088173817021*x7 + 0.382446861901943*x10)*x4 - 7.372*log( 0.972461133672523*x4 + 7.372*x7 + 1.1893141713454*x10)*x7 - 1.868*log( 1.86752460515164*x4 + 2.61699842799583*x7 + 1.868*x10)*x10 - 12.7287341082197*log(x2)*x2 - 45.8763409542885*log(x5)*x5 - 10.607456380675*log(x8)*x8 - 12.7287341082197*log(x3)*x3 - 45.8763409542885*log(x6)*x6 - 10.607456380675*log(x9)*x9 - 12.7287341082197*log(x4)*x4 - 45.8763409542885*log(x7)*x7 - 10.607456380675*log(x10)*x10) + objvar =E= 0; e2.. x2 + x3 + x4 =E= 0.4; e3.. x5 + x6 + x7 =E= 0.1; e4.. x8 + x9 + x10 =E= 0.5; * set non-default bounds x2.lo = 1E-7; x2.up = 0.4; x3.lo = 1E-7; x3.up = 0.4; x4.lo = 1E-7; x4.up = 0.4; x5.lo = 1E-7; x5.up = 0.1; x6.lo = 1E-7; x6.up = 0.1; x7.lo = 1E-7; x7.up = 0.1; x8.lo = 1E-7; x8.up = 0.5; x9.lo = 1E-7; x9.up = 0.5; x10.lo = 1E-7; x10.up = 0.5; * set non-default levels x2.l = 0.0088; x3.l = 0.33595; x4.l = 0.05525; x5.l = 0.00065; x6.l = 0.00193; x7.l = 0.09742; x8.l = 0.30803; x9.l = 0.147; x10.l = 0.04497; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91