MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex6_2_9
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -0.03406934 (ANTIGONE) -0.03448031 (BARON) -0.03406618 (COUENNE) -0.03407258 (LINDO) -0.06432564 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. McDonald, C M and Floudas, C A, GLOPEQ: A New Computational Tool for the Phase and Chemical Equilibrium Problem, Computers and Chemical Engineering, 21:1, 1997, 1-23. Heidemann, R and Mandhane, J, Some Properties of the NRTL Equation in Correlating Liquid-Liquid Equilibrium Data, Chemical Engineering Science, 28:5, 1973, 1213-1221. |
Sourceⓘ | Test Problem ex6.2.9 of Chapter 6 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 4 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 4 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | nonconvex |
#Nonzeros in Objectiveⓘ | 4 |
#Nonlinear Nonzeros in Objectiveⓘ | 4 |
#Constraintsⓘ | 2 |
#Linear Constraintsⓘ | 2 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | div log mul |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 4 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 8 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 4 |
#Blocks in Hessian of Lagrangianⓘ | 2 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 4.4374e-01 |
Maximal coefficientⓘ | 3.5679e+01 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 3 3 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 5 5 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 9 5 4 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5; Equations e1,e2,e3; e1.. -(log(4.8274*x2 + 0.92*x4)*(31.4830434782609*x2 + 6*x4) - 1.36551138119385 *x2 + 2.8555953099828*x4 + 11.5030434782609*log(x2/(4.8274*x2 + 0.92*x4))* x2 + 20.98*log(x2/(4.196*x2 + 1.4*x4))*x2 + 7*log(x4/(4.196*x2 + 1.4*x4))* x4 + log(4.196*x2 + 1.4*x4)*(4.196*x2 + 1.4*x4) + 1.62*log(x2/( 7.52678200680961*x2 + 0.443737968424621*x4))*x2 + 0.848*log(x2/( 7.52678200680961*x2 + 0.443737968424621*x4))*x2 + 1.728*log(x2/( 1.82245052351472*x2 + 1.4300083598626*x4))*x2 + 1.4*log(x4/( 0.504772348000588*x2 + 1.4*x4))*x4 + log(4.8274*x3 + 0.92*x5)*( 31.4830434782609*x3 + 6*x5) - 1.36551138119385*x3 + 2.8555953099828*x5 + 11.5030434782609*log(x3/(4.8274*x3 + 0.92*x5))*x3 + 20.98*log(x3/(4.196*x3 + 1.4*x5))*x3 + 7*log(x5/(4.196*x3 + 1.4*x5))*x5 + log(4.196*x3 + 1.4*x5) *(4.196*x3 + 1.4*x5) + 1.62*log(x3/(7.52678200680961*x3 + 0.443737968424621*x5))*x3 + 0.848*log(x3/(7.52678200680961*x3 + 0.443737968424621*x5))*x3 + 1.728*log(x3/(1.82245052351472*x3 + 1.4300083598626*x5))*x3 + 1.4*log(x5/(0.504772348000588*x3 + 1.4*x5))*x5 - 35.6790434782609*log(x2)*x2 - 7.4*log(x4)*x4 - 35.6790434782609*log(x3) *x3 - 7.4*log(x5)*x5) + objvar =E= 0; e2.. x2 + x3 =E= 0.5; e3.. x4 + x5 =E= 0.5; * set non-default bounds x2.lo = 1E-7; x2.up = 0.5; x3.lo = 1E-7; x3.up = 0.5; x4.lo = 1E-7; x4.up = 0.5; x5.lo = 1E-7; x5.up = 0.5; * set non-default levels x2.l = 0.4998; x3.l = 0.0002; x4.l = 0.0451; x5.l = 0.4549; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91