MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance ex7_3_2

Formats ams gms mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
1.08986397 p1 ( gdx sol )
(infeas: 8e-15)
Other points (infeas > 1e-08)  
Dual Bounds
1.08986397 (ANTIGONE)
1.08986397 (BARON)
1.08986397 (COUENNE)
1.08986397 (LINDO)
1.08986391 (SCIP)
References Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999.
Sideris, A and Sanchez, Fast Computation of the Multivariable Stability Margin for Real Interrelated Uncertain Parameters, IEEE Transactions on Automatic Control, 34:12, 1989, 1272-1276.
Source Test Problem ex7.3.2 of Chapter 7 of Floudas e.a. handbook
Added to library 31 Jul 2001
Problem type NLP
#Variables 4
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 3
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 1
#Nonlinear Nonzeros in Objective 0
#Constraints 7
#Linear Constraints 6
#Quadratic Constraints 0
#Polynomial Constraints 1
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 15
#Nonlinear Nonzeros in Jacobian 3
#Nonzeros in (Upper-Left) Hessian of Lagrangian 6
#Nonzeros in Diagonal of Hessian of Lagrangian 2
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 3
Maximal blocksize in Hessian of Lagrangian 3
Average blocksize in Hessian of Lagrangian 3.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 2.0000e-01
Maximal coefficient 4.0000e+00
Infeasibility of initial point 1.5
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          8        1        0        7        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          5        5        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         17       14        3        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,objvar;

Equations  e1,e2,e3,e4,e5,e6,e7,e8;


e1..  - x4 + objvar =E= 0;

e2.. POWER(x1,4)*POWER(x2,4) - POWER(x1,4) - POWER(x2,4)*x3 =L= 0;

e3..  - x1 - 0.25*x4 =L= -1.4;

e4..    x1 - 0.25*x4 =L= 1.4;

e5..  - x2 - 0.2*x4 =L= -1.5;

e6..    x2 - 0.2*x4 =L= 1.5;

e7..  - x3 - 0.2*x4 =L= -0.8;

e8..    x3 - 0.2*x4 =L= 0.8;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0