MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex7_3_6
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | inf (ANTIGONE) inf (BARON) inf (COUENNE) inf (LINDO) inf (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Barmish, B R, New Tools for Robustness of Linear Systems, MacMillan Publishing Company, New York, NY, 1994. Abate, M, Barmish, B R, Murillo-Sanchez, C, and Tempo, R, Application of Some New Tools to Robust Stability Analysis of Spark Ignition Engines : A Case Study, IEEE Transactions on Control Systems Technology, 2:1, 1994, 22-30. |
Sourceⓘ | Test Problem ex7.3.6 of Chapter 7 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 17 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 14 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 17 |
#Linear Constraintsⓘ | 7 |
#Quadratic Constraintsⓘ | 1 |
#Polynomial Constraintsⓘ | 9 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 78 |
#Nonlinear Nonzeros in Jacobianⓘ | 54 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 60 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
#Blocks in Hessian of Lagrangianⓘ | 2 |
Minimal blocksize in Hessian of Lagrangianⓘ | 7 |
Maximal blocksize in Hessian of Lagrangianⓘ | 7 |
Average blocksize in Hessian of Lagrangianⓘ | 7.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 6.2899e-05 |
Maximal coefficientⓘ | 9.0000e+00 |
Infeasibility of initial pointⓘ | 3.433 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 18 11 0 7 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 18 18 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 80 26 54 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,objvar; Positive Variables x8,x9; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18; e1.. - x9 + objvar =E= 0; e2.. POWER(x8,4)*x14 - POWER(x8,6)*x16 - sqr(x8)*x12 + x10 =E= 0; e3.. POWER(x8,6)*x17 - POWER(x8,4)*x15 + sqr(x8)*x13 - x11 =E= 0; e4.. - x1 - 1.2721*x9 =L= -3.4329; e5.. - x2 - 0.06*x9 =L= -0.1627; e6.. - x3 - 0.0782*x9 =L= -0.1139; e7.. x4 - 0.3068*x9 =L= 0.2539; e8.. - x5 - 0.0108*x9 =L= -0.0208; e9.. x6 - 2.4715*x9 =L= 2.0247; e10.. x7 + 9*x9 =L= 1; e11.. -(6.82079e-5*x1*x3*sqr(x4) + 6.82079e-5*x1*x2*x4*x5) + x10 =E= 0; e12.. -(0.00076176*sqr(x2)*sqr(x5) + 0.00076176*sqr(x3)*sqr(x4) + 0.000402141* x1*x2*sqr(x5) + 0.00337606*x1*x3*sqr(x4) + 6.82079e-5*x1*x4*x5 + 0.00051612*sqr(x2)*x5*x6 + 0.00337606*x1*x2*x4*x5 + 6.82079e-5*x1*x2*x4* x7 + 6.28987e-5*x1*x2*x5*x6 + 0.000402141*x1*x3*x4*x5 + 6.28987e-5*x1*x3* x4*x6 + 0.00152352*x2*x3*x4*x5 + 0.00051612*x2*x3*x4*x6) + x11 =E= 0; e13.. -(0.000402141*sqr(x5)*x1 + 0.00152352*sqr(x5)*x2 + 0.0552*sqr(x2)*sqr(x5) + 0.0552*sqr(x3)*sqr(x4) + 0.0189477*x1*x2*sqr(x5) + 0.034862*x1*x3*sqr( x4) + 0.00336706*x1*x4*x5 + 6.82079e-5*x1*x4*x7 + 6.28987e-5*x1*x5*x6 + 0.00152352*x3*x4*x5 + 0.00051612*x3*x4*x6 - 0.00234048*sqr(x3)*x4*x6 + 0.034862*x1*x2*x4*x5 + 0.0237398*sqr(x2)*x5*x6 + 0.00152352*sqr(x2)*x5*x7 + 0.00051612*sqr(x2)*x6*x7 + 0.00336706*x1*x2*x4*x7 + 0.00287416*x1*x2* x5*x6 + 0.000804282*x1*x2*x5*x7 + 6.28987e-5*x1*x2*x6*x7 + 0.0189477*x1* x3*x4*x5 + 0.00287416*x1*x3*x4*x6 + 0.000402141*x1*x3*x4*x7 + 0.1104*x2* x3*x4*x5 + 0.0237398*x2*x3*x4*x6 + 0.00152352*x2*x3*x4*x7 - 0.00234048*x2 *x3*x5*x6 + 0.00103224*x2*x5*x6) + x12 =E= 0; e14.. -(0.189477*sqr(x5)*x1 + 0.1104*sqr(x5)*x2 + 0.00051612*x5*x6 + sqr(x2)* sqr(x5) + 0.00076176*sqr(x2)*sqr(x7) + sqr(x3)*sqr(x4) + 0.1586*x1*x2* sqr(x5) + 0.000402141*x1*x2*sqr(x7) + 0.0872*x1*x3*sqr(x4) + 0.034862*x1* x4*x5 + 0.00336706*x1*x4*x7 + 0.00287416*x1*x5*x6 + 6.28987e-5*x1*x6*x7 + 0.00103224*x2*x6*x7 + 0.1104*x3*x4*x5 + 0.0237398*x3*x4*x6 + 0.00152352*x3*x4*x7 - 0.00234048*x3*x5*x6 + 0.1826*sqr(x2)*x5*x6 + 0.1104 *sqr(x2)*x5*x7 + 0.0237398*sqr(x2)*x6*x7 - 0.0848*sqr(x3)*x4*x6 + 0.0872* x1*x2*x4*x5 + 0.034862*x1*x2*x4*x7 + 0.0215658*x1*x2*x5*x6 + 0.0378954*x1 *x2*x5*x7 + 0.00287416*x1*x2*x6*x7 + 0.1586*x1*x3*x4*x5 + 0.0215658*x1*x3 *x4*x6 + 0.0189477*x1*x3*x4*x7 + 2*x2*x3*x4*x5 + 0.1826*x2*x3*x4*x6 + 0.1104*x2*x3*x4*x7 - 0.0848*x2*x3*x5*x6 - 0.00234048*x2*x3*x6*x7 + 0.00076176*sqr(x5) + 0.0474795*x2*x5*x6 + 0.000804282*x1*x5*x7 + 0.00304704*x2*x5*x7) + x13 =E= 0; e15.. -(0.1586*sqr(x5)*x1 + 0.000402141*sqr(x7)*x1 + 2*sqr(x5)*x2 + 0.00152352* sqr(x7)*x2 + 0.0237398*x5*x6 + 0.00152352*x5*x7 + 0.00051612*x6*x7 + 0.0552*sqr(x2)*sqr(x7) + 0.0189477*x1*x2*sqr(x7) + 0.0872*x1*x4*x5 + 0.034862*x1*x4*x7 + 0.0215658*x1*x5*x6 + 0.00287416*x1*x6*x7 + 0.0474795* x2*x6*x7 + 2*x3*x4*x5 + 0.1826*x3*x4*x6 + 0.1104*x3*x4*x7 - 0.0848*x3*x5* x6 - 0.00234048*x3*x6*x7 + 2*sqr(x2)*x5*x7 + 0.1826*sqr(x2)*x6*x7 + 0.0872*x1*x2*x4*x7 + 0.3172*x1*x2*x5*x7 + 0.0215658*x1*x2*x6*x7 + 0.1586* x1*x3*x4*x7 + 2*x2*x3*x4*x7 - 0.0848*x2*x3*x6*x7 + 0.0552*sqr(x5) + 0.3652*x2*x5*x6 + 0.0378954*x1*x5*x7 + 0.2208*x2*x5*x7) + x14 =E= 0; e16.. -(0.0189477*sqr(x7)*x1 + 0.1104*sqr(x7)*x2 + 0.1826*x5*x6 + 0.1104*x5*x7 + 0.0237398*x6*x7 + sqr(x2)*sqr(x7) + 0.1586*x1*x2*sqr(x7) + 0.0872*x1* x4*x7 + 0.0215658*x1*x6*x7 + 0.3652*x2*x6*x7 + 2*x3*x4*x7 - 0.0848*x3*x6* x7 + sqr(x5) + 0.00076176*sqr(x7) + 0.3172*x1*x5*x7 + 4*x2*x5*x7) + x15 =E= 0; e17.. -(0.1586*sqr(x7)*x1 + 2*sqr(x7)*x2 + 2*x5*x7 + 0.1826*x6*x7 + 0.0552*sqr( x7)) + x16 =E= 0; e18.. -sqr(x7) + x17 =E= 0; * set non-default bounds x1.up = 3.4329; x2.up = 0.1627; x3.up = 0.1139; x4.lo = 0.2539; x5.up = 0.0208; x6.lo = 2.0247; x7.lo = 1; x8.up = 10; x9.up = 1; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91