MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance ex8_1_6

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
-5.06543973 p1 ( gdx sol )
(infeas: 0)
-10.08600150 p2 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
-10.08601154 (ANTIGONE)
-10.08600151 (BARON)
-10.08600150 (COUENNE)
-10.08600150 (LINDO)
-10.08600220 (SCIP)
References Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999.
Cagliari, University of, Ed, Towards Global Optimization: Proceedings of a Workshop at the University of Cagliari, Italy, 1975.
Source Test Problem ex8.1.6 of Chapter 8 of Floudas e.a. handbook
Added to library 31 Jul 2001
Problem type NLP
#Variables 2
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 2
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type nonlinear
Objective curvature indefinite
#Nonzeros in Objective 2
#Nonlinear Nonzeros in Objective 2
#Constraints 0
#Linear Constraints 0
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions div sqr
Constraints curvature linear
#Nonzeros in Jacobian 0
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 4
#Nonzeros in Diagonal of Hessian of Lagrangian 2
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 2
Average blocksize in Hessian of Lagrangian 2.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e-01
Maximal coefficient 8.0000e+00
Infeasibility of initial point 0
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          1        1        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          3        3        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*          3        1        2        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,objvar;

Equations  e1;


e1.. -(-1/(0.1 + sqr((-4) + x1) + sqr((-4) + x2)) - 1/(0.2 + sqr((-1) + x1) + 
     sqr((-1) + x2)) - 1/(0.2 + sqr((-8) + x1) + sqr((-8) + x2))) + objvar
      =E= 0;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0