MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex8_1_7
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 0.02931060 (ANTIGONE) 0.02931083 (BARON) 0.02931083 (COUENNE) 0.02931083 (LINDO) 0.02931011 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Adjiman, C S, Dallwig, S, Floudas, C A, and Neumaier, A, A Global Optimization Method, alpha-BB, For General Twice-Differentiable NLPs - I. Theoretical Advances, Computers and Chemical Engineering, 22:9, 1998, 1137-1158. Murtagh, B A and Saunders, M A, MINOS 5.4 User's Guide, Tech. Rep., Systems Optimization Laboratory, Department of Operations Research, 1993. |
Sourceⓘ | Test Problem ex8.1.7 of Chapter 8 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 5 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 5 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | polynomial |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 5 |
#Nonlinear Nonzeros in Objectiveⓘ | 5 |
#Constraintsⓘ | 5 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 3 |
#Polynomial Constraintsⓘ | 2 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 14 |
#Nonlinear Nonzeros in Jacobianⓘ | 8 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 15 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 5 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 5 |
Maximal blocksize in Hessian of Lagrangianⓘ | 5 |
Average blocksize in Hessian of Lagrangianⓘ | 5.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.0000e-01 |
Maximal coefficientⓘ | 4.0000e+00 |
Infeasibility of initial pointⓘ | 6.243 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 6 2 0 4 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 6 6 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 20 7 13 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,objvar; Equations e1,e2,e3,e4,e5,e6; e1.. sqr(x2) + POWER(x3,3) + x1 =L= 6.24264068711929; e2.. (-POWER(x3,3)) - sqr(x2) - x1 =L= -6.24264068711929; e3.. -sqr(x3) + x2 + x4 =L= 0.82842712474619; e4.. sqr(x3) - x2 - x4 =L= -0.82842712474619; e5.. 0.5*x1*x5 + 0.5*x1*x5 =E= 2; e6.. -(sqr((-1) + x1) + sqr(x1 - x2) + POWER(x2 - x3,3) + POWER(x3 - x4,4) + POWER(x4 - x5,4)) + objvar =E= 0; * set non-default bounds x1.lo = -5; x1.up = 5; x2.lo = -5; x2.up = 5; x3.lo = -5; x3.up = 5; x4.lo = -5; x4.up = 5; x5.lo = -5; x5.up = 5; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91