MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex8_2_1b
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -979.17827480 (ANTIGONE) -979.17827560 (BARON) -979.17827380 (COUENNE) -979.17827380 (LINDO) -979.17910640 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Grossmann, I E and Sargent, R, Optimal Design of Multipurpose Chemical Plants, Industrial and Engineering Chemistry Process Design and Development, 18:2, 1979, 343-348. Harding, S T and Floudas, C A, Global Optimization in Multiproduct and Multipurpose Batch Design Under Uncertainty, Industrial and Engineering Chemistry Research, 36:5, 1997, 1644-1664. |
Sourceⓘ | Test Problem ex8.2.1 of Chapter 8 of Floudas e.a. handbook with added variable bounds and common multiplicative sub-expression exp(data-b(i)) replaced |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 57 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 57 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 53 |
#Nonlinear Nonzeros in Objectiveⓘ | 3 |
#Constraintsⓘ | 33 |
#Linear Constraintsⓘ | 6 |
#Quadratic Constraintsⓘ | 25 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 2 |
Operands in Gen. Nonlin. Functionsⓘ | exp |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 116 |
#Nonlinear Nonzeros in Jacobianⓘ | 102 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 105 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 5 |
#Blocks in Hessian of Lagrangianⓘ | 7 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 26 |
Average blocksize in Hessian of Lagrangianⓘ | 8.142857 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.5471e-06 |
Maximal coefficientⓘ | 1.0000e+01 |
Infeasibility of initial pointⓘ | 0.1707 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 34 3 6 25 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 58 58 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 170 65 105 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34; e1.. -0.3*(10*exp(0.6*x2) + 10*exp(0.6*x3) + 10*exp(0.6*x4)) + objvar + 1.54711033913716E-6*x5 + 0.000219040316990534*x6 + 0.00264813118267794*x7 + 0.000219040316990534*x8 + 1.54711033913716E-6*x9 + 0.000219040316990533*x10 + 0.0310117896917886*x11 + 0.374923157717238*x12 + 0.0310117896917886*x13 + 0.000219040316990532*x14 + 0.00264813118267793*x15 + 0.374923157717237*x16 + 4.5327075795914*x17 + 0.374923157717237*x18 + 0.00264813118267791*x19 + 0.000219040316990532*x20 + 0.0310117896917884*x21 + 0.374923157717236*x22 + 0.0310117896917884*x23 + 0.000219040316990531*x24 + 1.54711033913713E-6*x25 + 0.000219040316990529*x26 + 0.00264813118267789*x27 + 0.000219040316990529*x28 + 1.54711033913712E-6*x29 + 1.9690495225382E-6*x30 + 0.000278778585260679*x31 + 0.00337034877795374*x32 + 0.000278778585260679*x33 + 1.9690495225382E-6*x34 + 0.000278778585260679*x35 + 0.0394695505168218*x36 + 0.477174928003758*x37 + 0.0394695505168218*x38 + 0.000278778585260677*x39 + 0.00337034877795372*x40 + 0.477174928003756*x41 + 5.7689005558436*x42 + 0.477174928003756*x43 + 0.00337034877795371*x44 + 0.000278778585260677*x45 + 0.0394695505168216*x46 + 0.477174928003755*x47 + 0.0394695505168216*x48 + 0.000278778585260676*x49 + 1.96904952253816E-6*x50 + 0.000278778585260674*x51 + 0.00337034877795367*x52 + 0.000278778585260674*x53 + 1.96904952253816E-6*x54 =E= 0; e2.. x2 - x55 =G= 0.693147180559945; e3.. x3 - x55 =G= 1.09861228866811; e4.. x4 - x55 =G= 1.38629436111989; e5.. x2 - x56 =G= 1.38629436111989; e6.. x3 - x56 =G= 1.79175946922805; e7.. x4 - x56 =G= 1.09861228866811; e8.. x5*x57 + x30*x58 =L= 8; e9.. x6*x57 + x31*x58 =L= 8; e10.. x7*x57 + x32*x58 =L= 8; e11.. x8*x57 + x33*x58 =L= 8; e12.. x9*x57 + x34*x58 =L= 8; e13.. x10*x57 + x35*x58 =L= 8; e14.. x11*x57 + x36*x58 =L= 8; e15.. x12*x57 + x37*x58 =L= 8; e16.. x13*x57 + x38*x58 =L= 8; e17.. x14*x57 + x39*x58 =L= 8; e18.. x15*x57 + x40*x58 =L= 8; e19.. x16*x57 + x41*x58 =L= 8; e20.. x17*x57 + x42*x58 =L= 8; e21.. x18*x57 + x43*x58 =L= 8; e22.. x19*x57 + x44*x58 =L= 8; e23.. x20*x57 + x45*x58 =L= 8; e24.. x21*x57 + x46*x58 =L= 8; e25.. x22*x57 + x47*x58 =L= 8; e26.. x23*x57 + x48*x58 =L= 8; e27.. x24*x57 + x49*x58 =L= 8; e28.. x25*x57 + x50*x58 =L= 8; e29.. x26*x57 + x51*x58 =L= 8; e30.. x27*x57 + x52*x58 =L= 8; e31.. x28*x57 + x53*x58 =L= 8; e32.. x29*x57 + x54*x58 =L= 8; e33.. -exp(2.99573227355399 - x55) + x57 =E= 0; e34.. -exp(2.77258872223978 - x56) + x58 =E= 0; * set non-default bounds x2.lo = 6.21460809842219; x2.up = 8.41183267575841; x3.lo = 6.21460809842219; x3.up = 8.41183267575841; x4.lo = 6.21460809842219; x4.up = 8.41183267575841; x5.lo = 160; x5.up = 163.752806164; x6.lo = 160; x6.up = 163.752806164; x7.lo = 160; x7.up = 163.752806164; x8.lo = 160; x8.up = 163.752806164; x9.lo = 160; x9.up = 163.752806164; x10.lo = 160; x10.up = 178.461227596; x11.lo = 160; x11.up = 178.461227596; x12.lo = 160; x12.up = 178.461227596; x13.lo = 160; x13.up = 178.461227596; x14.lo = 160; x14.up = 178.461227596; x15.lo = 160; x15.up = 200; x16.lo = 160; x16.up = 200; x17.lo = 160; x17.up = 200; x18.lo = 160; x18.up = 200; x19.lo = 160; x19.up = 200; x20.lo = 160; x20.up = 221.538772404; x21.lo = 160; x21.up = 221.538772404; x22.lo = 160; x22.up = 221.538772404; x23.lo = 160; x23.up = 221.538772404; x24.lo = 160; x24.up = 221.538772404; x25.lo = 160; x25.up = 236.247193836; x26.lo = 160; x26.up = 236.247193836; x27.lo = 160; x27.up = 236.247193836; x28.lo = 160; x28.up = 236.247193836; x29.lo = 160; x29.up = 236.247193836; x30.lo = 60; x30.up = 63.752806164; x31.lo = 60; x31.up = 78.461227596; x32.lo = 60; x32.up = 100; x33.lo = 60; x33.up = 121.538772404; x34.lo = 60; x34.up = 136.247193836; x35.lo = 60; x35.up = 63.752806164; x36.lo = 60; x36.up = 78.461227596; x37.lo = 60; x37.up = 100; x38.lo = 60; x38.up = 121.538772404; x39.lo = 60; x39.up = 136.247193836; x40.lo = 60; x40.up = 63.752806164; x41.lo = 60; x41.up = 78.461227596; x42.lo = 60; x42.up = 100; x43.lo = 60; x43.up = 121.538772404; x44.lo = 60; x44.up = 136.247193836; x45.lo = 60; x45.up = 63.752806164; x46.lo = 60; x46.up = 78.461227596; x47.lo = 60; x47.up = 100; x48.lo = 60; x48.up = 121.538772404; x49.lo = 60; x49.up = 136.247193836; x50.lo = 60; x50.up = 63.752806164; x51.lo = 60; x51.up = 78.461227596; x52.lo = 60; x52.up = 100; x53.lo = 60; x53.up = 121.538772404; x54.lo = 60; x54.up = 136.247193836; x55.lo = 4.8283137373023; x55.up = 7.02553831463852; x56.lo = 4.42284862919414; x56.up = 6.62007320653036; x57.lo = 0.0177777777777778; x57.up = 0.16; x58.lo = 0.0213333333333333; x58.up = 0.192; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91