MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Removed Instance ex8_2_4

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)  
Other points (infeas > 1e-08)  
Dual Bounds  
References Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999.
Harding, S T and Floudas, C A, Global Optimization in Multiproduct and Multipurpose Batch Design Under Uncertainty, Industrial and Engineering Chemistry Research, 36:5, 1997, 1644-1664.
Source Test Problem ex8.2.4 of Chapter 8 of Floudas e.a. handbook
Added to library 31 Jul 2001
Removed from library 14 Aug 2014
Removed because Variant of ex8_2_4b with some variable bounds missing and x57..x62 not substituted out
Problem type NLP
#Variables 55
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 55
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type nonlinear
Objective curvature convex
#Nonzeros in Objective 53
#Nonlinear Nonzeros in Objective 3
#Constraints 81
#Linear Constraints 6
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 75
Operands in Gen. Nonlin. Functions exp mul
Constraints curvature indefinite
#Nonzeros in Jacobian 312
#Nonlinear Nonzeros in Jacobian 300
#Nonzeros in (Upper-Left) Hessian of Lagrangian 105
#Nonzeros in Diagonal of Hessian of Lagrangian 5
#Blocks in Hessian of Lagrangian 5
Minimal blocksize in Hessian of Lagrangian 1
Maximal blocksize in Hessian of Lagrangian 26
Average blocksize in Hessian of Lagrangian 11.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.5471e-06
Maximal coefficient 1.0000e+01
Infeasibility of initial point 1.792

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         82        1        6       75        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         56       56        0        0        0        0        0        0
*  FX      0        0        0        0        0        0        0        0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        366       63      303        0
*
*  Solve m using NLP minimizing objvar;


Variables  objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18
          ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35
          ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52
          ,x53,x54,x55,x56;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82;


e1.. -0.3*(10*exp(0.6*x2) + 10*exp(0.6*x3) + 10*exp(0.6*x4)) + objvar
      + 1.54711033913716E-6*x5 + 0.000219040316990534*x6
      + 0.00264813118267794*x7 + 0.000219040316990534*x8
      + 1.54711033913716E-6*x9 + 0.000219040316990533*x10
      + 0.0310117896917886*x11 + 0.374923157717238*x12 + 0.0310117896917886*x13
      + 0.000219040316990532*x14 + 0.00264813118267793*x15
      + 0.374923157717237*x16 + 4.5327075795914*x17 + 0.374923157717237*x18
      + 0.00264813118267791*x19 + 0.000219040316990532*x20
      + 0.0310117896917884*x21 + 0.374923157717236*x22 + 0.0310117896917884*x23
      + 0.000219040316990531*x24 + 1.54711033913713E-6*x25
      + 0.000219040316990529*x26 + 0.00264813118267789*x27
      + 0.000219040316990529*x28 + 1.54711033913712E-6*x29
      + 1.9690495225382E-6*x30 + 0.000278778585260679*x31
      + 0.00337034877795374*x32 + 0.000278778585260679*x33
      + 1.9690495225382E-6*x34 + 0.000278778585260678*x35
      + 0.0394695505168218*x36 + 0.477174928003758*x37 + 0.0394695505168218*x38
      + 0.000278778585260677*x39 + 0.00337034877795373*x40
      + 0.477174928003756*x41 + 5.7689005558436*x42 + 0.477174928003756*x43
      + 0.00337034877795371*x44 + 0.000278778585260677*x45
      + 0.0394695505168216*x46 + 0.477174928003755*x47 + 0.0394695505168216*x48
      + 0.000278778585260676*x49 + 1.96904952253816E-6*x50
      + 0.000278778585260674*x51 + 0.00337034877795368*x52
      + 0.000278778585260674*x53 + 1.96904952253816E-6*x54 =E= 0;

e2..    x2 - x55 =G= 0.693147180559945;

e3..    x3 - x55 =G= 1.09861228866811;

e4..    x4 - x55 =G= 1.38629436111989;

e5..    x2 - x56 =G= 1.38629436111989;

e6..    x3 - x56 =G= 1.79175946922805;

e7..    x4 - x56 =G= 1.09861228866811;

e8.. exp(2.07944154167984 - x55)*x5 + exp(2.77258872223978 - x56)*x30 =L= 8;

e9.. exp(2.07944154167984 - x55)*x6 + exp(2.77258872223978 - x56)*x31 =L= 8;

e10.. exp(2.07944154167984 - x55)*x7 + exp(2.77258872223978 - x56)*x32 =L= 8;

e11.. exp(2.07944154167984 - x55)*x8 + exp(2.77258872223978 - x56)*x33 =L= 8;

e12.. exp(2.07944154167984 - x55)*x9 + exp(2.77258872223978 - x56)*x34 =L= 8;

e13.. exp(2.07944154167984 - x55)*x10 + exp(2.77258872223978 - x56)*x35 =L= 8;

e14.. exp(2.07944154167984 - x55)*x11 + exp(2.77258872223978 - x56)*x36 =L= 8;

e15.. exp(2.07944154167984 - x55)*x12 + exp(2.77258872223978 - x56)*x37 =L= 8;

e16.. exp(2.07944154167984 - x55)*x13 + exp(2.77258872223978 - x56)*x38 =L= 8;

e17.. exp(2.07944154167984 - x55)*x14 + exp(2.77258872223978 - x56)*x39 =L= 8;

e18.. exp(2.07944154167984 - x55)*x15 + exp(2.77258872223978 - x56)*x40 =L= 8;

e19.. exp(2.07944154167984 - x55)*x16 + exp(2.77258872223978 - x56)*x41 =L= 8;

e20.. exp(2.07944154167984 - x55)*x17 + exp(2.77258872223978 - x56)*x42 =L= 8;

e21.. exp(2.07944154167984 - x55)*x18 + exp(2.77258872223978 - x56)*x43 =L= 8;

e22.. exp(2.07944154167984 - x55)*x19 + exp(2.77258872223978 - x56)*x44 =L= 8;

e23.. exp(2.07944154167984 - x55)*x20 + exp(2.77258872223978 - x56)*x45 =L= 8;

e24.. exp(2.07944154167984 - x55)*x21 + exp(2.77258872223978 - x56)*x46 =L= 8;

e25.. exp(2.07944154167984 - x55)*x22 + exp(2.77258872223978 - x56)*x47 =L= 8;

e26.. exp(2.07944154167984 - x55)*x23 + exp(2.77258872223978 - x56)*x48 =L= 8;

e27.. exp(2.07944154167984 - x55)*x24 + exp(2.77258872223978 - x56)*x49 =L= 8;

e28.. exp(2.07944154167984 - x55)*x25 + exp(2.77258872223978 - x56)*x50 =L= 8;

e29.. exp(2.07944154167984 - x55)*x26 + exp(2.77258872223978 - x56)*x51 =L= 8;

e30.. exp(2.07944154167984 - x55)*x27 + exp(2.77258872223978 - x56)*x52 =L= 8;

e31.. exp(2.07944154167984 - x55)*x28 + exp(2.77258872223978 - x56)*x53 =L= 8;

e32.. exp(2.07944154167984 - x55)*x29 + exp(2.77258872223978 - x56)*x54 =L= 8;

e33.. exp(2.99573227355399 - x55)*x5 + exp(1.38629436111989 - x56)*x30 =L= 8;

e34.. exp(2.99573227355399 - x55)*x6 + exp(1.38629436111989 - x56)*x31 =L= 8;

e35.. exp(2.99573227355399 - x55)*x7 + exp(1.38629436111989 - x56)*x32 =L= 8;

e36.. exp(2.99573227355399 - x55)*x8 + exp(1.38629436111989 - x56)*x33 =L= 8;

e37.. exp(2.99573227355399 - x55)*x9 + exp(1.38629436111989 - x56)*x34 =L= 8;

e38.. exp(2.99573227355399 - x55)*x10 + exp(1.38629436111989 - x56)*x35 =L= 8;

e39.. exp(2.99573227355399 - x55)*x11 + exp(1.38629436111989 - x56)*x36 =L= 8;

e40.. exp(2.99573227355399 - x55)*x12 + exp(1.38629436111989 - x56)*x37 =L= 8;

e41.. exp(2.99573227355399 - x55)*x13 + exp(1.38629436111989 - x56)*x38 =L= 8;

e42.. exp(2.99573227355399 - x55)*x14 + exp(1.38629436111989 - x56)*x39 =L= 8;

e43.. exp(2.99573227355399 - x55)*x15 + exp(1.38629436111989 - x56)*x40 =L= 8;

e44.. exp(2.99573227355399 - x55)*x16 + exp(1.38629436111989 - x56)*x41 =L= 8;

e45.. exp(2.99573227355399 - x55)*x17 + exp(1.38629436111989 - x56)*x42 =L= 8;

e46.. exp(2.99573227355399 - x55)*x18 + exp(1.38629436111989 - x56)*x43 =L= 8;

e47.. exp(2.99573227355399 - x55)*x19 + exp(1.38629436111989 - x56)*x44 =L= 8;

e48.. exp(2.99573227355399 - x55)*x20 + exp(1.38629436111989 - x56)*x45 =L= 8;

e49.. exp(2.99573227355399 - x55)*x21 + exp(1.38629436111989 - x56)*x46 =L= 8;

e50.. exp(2.99573227355399 - x55)*x22 + exp(1.38629436111989 - x56)*x47 =L= 8;

e51.. exp(2.99573227355399 - x55)*x23 + exp(1.38629436111989 - x56)*x48 =L= 8;

e52.. exp(2.99573227355399 - x55)*x24 + exp(1.38629436111989 - x56)*x49 =L= 8;

e53.. exp(2.99573227355399 - x55)*x25 + exp(1.38629436111989 - x56)*x50 =L= 8;

e54.. exp(2.99573227355399 - x55)*x26 + exp(1.38629436111989 - x56)*x51 =L= 8;

e55.. exp(2.99573227355399 - x55)*x27 + exp(1.38629436111989 - x56)*x52 =L= 8;

e56.. exp(2.99573227355399 - x55)*x28 + exp(1.38629436111989 - x56)*x53 =L= 8;

e57.. exp(2.99573227355399 - x55)*x29 + exp(1.38629436111989 - x56)*x54 =L= 8;

e58.. exp(2.07944154167984 - x55)*x5 + exp(1.38629436111989 - x56)*x30 =L= 8;

e59.. exp(2.07944154167984 - x55)*x6 + exp(1.38629436111989 - x56)*x31 =L= 8;

e60.. exp(2.07944154167984 - x55)*x7 + exp(1.38629436111989 - x56)*x32 =L= 8;

e61.. exp(2.07944154167984 - x55)*x8 + exp(1.38629436111989 - x56)*x33 =L= 8;

e62.. exp(2.07944154167984 - x55)*x9 + exp(1.38629436111989 - x56)*x34 =L= 8;

e63.. exp(2.07944154167984 - x55)*x10 + exp(1.38629436111989 - x56)*x35 =L= 8;

e64.. exp(2.07944154167984 - x55)*x11 + exp(1.38629436111989 - x56)*x36 =L= 8;

e65.. exp(2.07944154167984 - x55)*x12 + exp(1.38629436111989 - x56)*x37 =L= 8;

e66.. exp(2.07944154167984 - x55)*x13 + exp(1.38629436111989 - x56)*x38 =L= 8;

e67.. exp(2.07944154167984 - x55)*x14 + exp(1.38629436111989 - x56)*x39 =L= 8;

e68.. exp(2.07944154167984 - x55)*x15 + exp(1.38629436111989 - x56)*x40 =L= 8;

e69.. exp(2.07944154167984 - x55)*x16 + exp(1.38629436111989 - x56)*x41 =L= 8;

e70.. exp(2.07944154167984 - x55)*x17 + exp(1.38629436111989 - x56)*x42 =L= 8;

e71.. exp(2.07944154167984 - x55)*x18 + exp(1.38629436111989 - x56)*x43 =L= 8;

e72.. exp(2.07944154167984 - x55)*x19 + exp(1.38629436111989 - x56)*x44 =L= 8;

e73.. exp(2.07944154167984 - x55)*x20 + exp(1.38629436111989 - x56)*x45 =L= 8;

e74.. exp(2.07944154167984 - x55)*x21 + exp(1.38629436111989 - x56)*x46 =L= 8;

e75.. exp(2.07944154167984 - x55)*x22 + exp(1.38629436111989 - x56)*x47 =L= 8;

e76.. exp(2.07944154167984 - x55)*x23 + exp(1.38629436111989 - x56)*x48 =L= 8;

e77.. exp(2.07944154167984 - x55)*x24 + exp(1.38629436111989 - x56)*x49 =L= 8;

e78.. exp(2.07944154167984 - x55)*x25 + exp(1.38629436111989 - x56)*x50 =L= 8;

e79.. exp(2.07944154167984 - x55)*x26 + exp(1.38629436111989 - x56)*x51 =L= 8;

e80.. exp(2.07944154167984 - x55)*x27 + exp(1.38629436111989 - x56)*x52 =L= 8;

e81.. exp(2.07944154167984 - x55)*x28 + exp(1.38629436111989 - x56)*x53 =L= 8;

e82.. exp(2.07944154167984 - x55)*x29 + exp(1.38629436111989 - x56)*x54 =L= 8;

Model m / all /;

m.limrow=0; m.limcol=0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0