MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Removed Instance ex8_3_11
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -0.79957193 (ANTIGONE) -10.00000000 (BARON) -10.00000000 (COUENNE) -10.00000000 (LINDO) -10.00000000 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Schweiger, C A and Floudas, C A, Optimization Framework for the Synthesis of Chemical Reactor Networks, Industrial and Engineering Chemistry Research, 38:3, 1998, 744-766. |
Sourceⓘ | Test Problem ex8.3.11 of Chapter 8 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Removed from libraryⓘ | 01 Mar 2022 |
Removed becauseⓘ | Numerically difficult formulation (coefficient of order 1E12 in front of exp()) |
Problem typeⓘ | NLP |
#Variablesⓘ | 115 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 110 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 76 |
#Linear Constraintsⓘ | 17 |
#Quadratic Constraintsⓘ | 44 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 15 |
Operands in Gen. Nonlin. Functionsⓘ | div exp mul |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 559 |
#Nonlinear Nonzeros in Jacobianⓘ | 448 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 388 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 10 |
#Blocks in Hessian of Lagrangianⓘ | 16 |
Minimal blocksize in Hessian of Lagrangianⓘ | 4 |
Maximal blocksize in Hessian of Lagrangianⓘ | 12 |
Average blocksize in Hessian of Lagrangianⓘ | 6.875 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.0000e-01 |
Maximal coefficientⓘ | 1.6000e+12 |
Infeasibility of initial pointⓘ | 250 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 77 77 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 116 116 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 561 113 448 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69 ,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86 ,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102 ,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115 ,x116; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68 ,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85 ,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x102,x103,x104,x105 ,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77; e1.. - objvar - x89 =E= 0; e2.. - x2 - x3 - x4 - x5 - x6 =E= -100; e3.. - x2 + x7 - x57 - x62 - x67 - x72 - x77 =E= 0; e4.. - x3 + x8 - x58 - x63 - x68 - x73 - x78 =E= 0; e5.. - x4 + x9 - x59 - x64 - x69 - x74 - x79 =E= 0; e6.. - x5 + x10 - x60 - x65 - x70 - x75 - x80 =E= 0; e7.. - x6 + x11 - x61 - x66 - x71 - x76 - x81 =E= 0; e8.. x12*x7 - (x37*x57 + x41*x62 + x45*x67 + x49*x72 + x53*x77) - x2 =E= 0; e9.. x13*x7 - (x38*x57 + x42*x62 + x46*x67 + x50*x72 + x54*x77) =E= 0; e10.. x14*x7 - (x39*x57 + x43*x62 + x47*x67 + x51*x72 + x55*x77) =E= 0; e11.. x15*x7 - (x40*x57 + x44*x62 + x48*x67 + x52*x72 + x56*x77) =E= 0; e12.. x16*x8 - (x37*x58 + x41*x63 + x45*x68 + x49*x73 + x53*x78) - x3 =E= 0; e13.. x17*x8 - (x38*x58 + x42*x63 + x46*x68 + x50*x73 + x54*x78) =E= 0; e14.. x18*x8 - (x39*x58 + x43*x63 + x47*x68 + x51*x73 + x55*x78) =E= 0; e15.. x19*x8 - (x40*x58 + x44*x63 + x48*x68 + x52*x73 + x56*x78) =E= 0; e16.. x20*x9 - (x37*x59 + x41*x64 + x45*x69 + x49*x74 + x53*x79) - x4 =E= 0; e17.. x21*x9 - (x38*x59 + x42*x64 + x46*x69 + x50*x74 + x54*x79) =E= 0; e18.. x22*x9 - (x39*x59 + x43*x64 + x47*x69 + x51*x74 + x55*x79) =E= 0; e19.. x23*x9 - (x40*x59 + x44*x64 + x48*x69 + x52*x74 + x56*x79) =E= 0; e20.. x24*x10 - (x37*x60 + x41*x65 + x45*x70 + x49*x75 + x53*x80) - x5 =E= 0; e21.. x25*x10 - (x38*x60 + x42*x65 + x46*x70 + x50*x75 + x54*x80) =E= 0; e22.. x26*x10 - (x39*x60 + x43*x65 + x47*x70 + x51*x75 + x55*x80) =E= 0; e23.. x27*x10 - (x40*x60 + x44*x65 + x48*x70 + x52*x75 + x56*x80) =E= 0; e24.. x28*x11 - (x37*x61 + x41*x66 + x45*x71 + x49*x76 + x53*x81) - x6 =E= 0; e25.. x29*x11 - (x38*x61 + x42*x66 + x46*x71 + x50*x76 + x54*x81) =E= 0; e26.. x30*x11 - (x39*x61 + x43*x66 + x47*x71 + x51*x76 + x55*x81) =E= 0; e27.. x31*x11 - (x40*x61 + x44*x66 + x48*x71 + x52*x76 + x56*x81) =E= 0; e28.. - x7 + x32 =E= 0; e29.. - x8 + x33 =E= 0; e30.. - x9 + x34 =E= 0; e31.. - x10 + x35 =E= 0; e32.. - x11 + x36 =E= 0; e33.. x37*x32 - (x12*x7 + x92*(-x102 - x104)) =E= 0; e34.. x38*x32 - (x13*x7 + x92*(x102 - x103)) =E= 0; e35.. x39*x32 - (x14*x7 + x92*x103) =E= 0; e36.. x40*x32 - (x15*x7 + 0.5*x92*x104) =E= 0; e37.. x41*x33 - (x16*x8 + x93*(-x105 - x107)) =E= 0; e38.. x42*x33 - (x17*x8 + x93*(x105 - x106)) =E= 0; e39.. x43*x33 - (x18*x8 + x93*x106) =E= 0; e40.. x44*x33 - (x19*x8 + 0.5*x93*x107) =E= 0; e41.. x45*x34 - (x20*x9 + x94*(-x108 - x110)) =E= 0; e42.. x46*x34 - (x21*x9 + x94*(x108 - x109)) =E= 0; e43.. x47*x34 - (x22*x9 + x94*x109) =E= 0; e44.. x48*x34 - (x23*x9 + 0.5*x94*x110) =E= 0; e45.. x49*x35 - (x24*x10 + x95*(-x111 - x113)) =E= 0; e46.. x50*x35 - (x25*x10 + x95*(x111 - x112)) =E= 0; e47.. x51*x35 - (x26*x10 + x95*x112) =E= 0; e48.. x52*x35 - (x27*x10 + 0.5*x95*x113) =E= 0; e49.. x53*x36 - (x28*x11 + x96*(-x114 - x116)) =E= 0; e50.. x54*x36 - (x29*x11 + x96*(x114 - x115)) =E= 0; e51.. x55*x36 - (x30*x11 + x96*x115) =E= 0; e52.. x56*x36 - (x31*x11 + 0.5*x96*x116) =E= 0; e53.. -5400000000*exp(-7971.81680926019/x97)*x37 + x102 =E= 0; e54.. -5400000000*exp(-7971.81680926019/x98)*x41 + x105 =E= 0; e55.. -5400000000*exp(-7971.81680926019/x99)*x45 + x108 =E= 0; e56.. -5400000000*exp(-7971.81680926019/x100)*x49 + x111 =E= 0; e57.. -5400000000*exp(-7971.81680926019/x101)*x53 + x114 =E= 0; e58.. -360000*exp(-3985.9084046301/x97)*x38 + x103 =E= 0; e59.. -360000*exp(-3985.9084046301/x98)*x42 + x106 =E= 0; e60.. -360000*exp(-3985.9084046301/x99)*x46 + x109 =E= 0; e61.. -360000*exp(-3985.9084046301/x100)*x50 + x112 =E= 0; e62.. -360000*exp(-3985.9084046301/x101)*x54 + x115 =E= 0; e63.. -1600000000000*exp(-11957.7252138903/x97)*x37*x37 + x104 =E= 0; e64.. -1600000000000*exp(-11957.7252138903/x98)*x41*x41 + x107 =E= 0; e65.. -1600000000000*exp(-11957.7252138903/x99)*x45*x45 + x110 =E= 0; e66.. -1600000000000*exp(-11957.7252138903/x100)*x49*x49 + x113 =E= 0; e67.. -1600000000000*exp(-11957.7252138903/x101)*x53*x53 + x116 =E= 0; e68.. x32 - x57 - x58 - x59 - x60 - x61 - x82 =E= 0; e69.. x33 - x62 - x63 - x64 - x65 - x66 - x83 =E= 0; e70.. x34 - x67 - x68 - x69 - x70 - x71 - x84 =E= 0; e71.. x35 - x72 - x73 - x74 - x75 - x76 - x85 =E= 0; e72.. x36 - x77 - x78 - x79 - x80 - x81 - x86 =E= 0; e73.. - x82 - x83 - x84 - x85 - x86 + x87 =E= 0; e74.. x87*x88 - (x82*x37 + x83*x41 + x84*x45 + x85*x49 + x86*x53) =E= 0; e75.. x87*x89 - (x82*x38 + x83*x42 + x84*x46 + x85*x50 + x86*x54) =E= 0; e76.. x87*x90 - (x82*x39 + x83*x43 + x84*x47 + x85*x51 + x86*x55) =E= 0; e77.. x87*x91 - (x82*x40 + x83*x44 + x84*x48 + x85*x52 + x86*x56) =E= 0; * set non-default bounds x2.up = 1000; x3.up = 1000; x4.up = 1000; x5.up = 1000; x6.up = 1000; x7.up = 1000; x8.up = 1000; x9.up = 1000; x10.up = 1000; x11.up = 1000; x12.up = 10; x13.up = 10; x14.up = 10; x15.up = 10; x16.up = 10; x17.up = 10; x18.up = 10; x19.up = 10; x20.up = 10; x21.up = 10; x22.up = 10; x23.up = 10; x24.up = 10; x25.up = 10; x26.up = 10; x27.up = 10; x28.up = 10; x29.up = 10; x30.up = 10; x31.up = 10; x32.up = 1000; x33.up = 1000; x34.up = 1000; x35.up = 1000; x36.up = 1000; x37.up = 10; x38.up = 10; x39.up = 10; x40.up = 10; x41.up = 10; x42.up = 10; x43.up = 10; x44.up = 10; x45.up = 10; x46.up = 10; x47.up = 10; x48.up = 10; x49.up = 10; x50.up = 10; x51.up = 10; x52.up = 10; x53.up = 10; x54.up = 10; x55.up = 10; x56.up = 10; x57.up = 1000; x58.up = 1000; x59.up = 1000; x60.up = 1000; x61.up = 1000; x62.up = 1000; x63.up = 1000; x64.up = 1000; x65.up = 1000; x66.up = 1000; x67.up = 1000; x68.up = 1000; x69.up = 1000; x70.up = 1000; x71.up = 1000; x72.up = 1000; x73.up = 1000; x74.up = 1000; x75.up = 1000; x76.up = 1000; x77.up = 1000; x78.up = 1000; x79.up = 1000; x80.up = 1000; x81.up = 1000; x82.up = 1000; x83.up = 1000; x84.up = 1000; x85.up = 1000; x86.up = 1000; x87.up = 1000; x88.up = 10; x89.up = 10; x90.up = 10; x91.up = 10; x92.up = 10000; x93.up = 10000; x94.up = 10000; x95.up = 10000; x96.up = 10000; x97.lo = 300; x97.up = 810; x98.lo = 300; x98.up = 810; x99.lo = 300; x99.up = 810; x100.lo = 300; x100.up = 810; x101.lo = 300; x101.up = 810; x102.up = 10000; x103.up = 10000; x104.up = 10000; x105.up = 10000; x106.up = 10000; x107.up = 10000; x108.up = 10000; x109.up = 10000; x110.up = 10000; x111.up = 10000; x112.up = 10000; x113.up = 10000; x114.up = 10000; x115.up = 10000; x116.up = 10000; * set non-default levels x2.l = 50; x3.l = 50; x4.l = 50; x5.l = 50; x6.l = 50; x7.l = 50; x8.l = 50; x9.l = 50; x10.l = 50; x11.l = 50; x12.l = 0.2; x13.l = 0.2; x14.l = 0.2; x15.l = 0.2; x16.l = 0.2; x17.l = 0.2; x18.l = 0.2; x19.l = 0.2; x20.l = 0.2; x21.l = 0.2; x22.l = 0.2; x23.l = 0.2; x24.l = 0.2; x25.l = 0.2; x26.l = 0.2; x27.l = 0.2; x28.l = 0.2; x29.l = 0.2; x30.l = 0.2; x31.l = 0.2; x32.l = 100; x33.l = 100; x34.l = 100; x35.l = 100; x36.l = 100; x37.l = 0.2; x38.l = 0.2; x39.l = 0.2; x40.l = 0.2; x41.l = 0.2; x42.l = 0.2; x43.l = 0.2; x44.l = 0.2; x45.l = 0.2; x46.l = 0.2; x47.l = 0.2; x48.l = 0.2; x49.l = 0.2; x50.l = 0.2; x51.l = 0.2; x52.l = 0.2; x53.l = 0.2; x54.l = 0.2; x55.l = 0.2; x56.l = 0.2; x57.l = 50; x58.l = 50; x59.l = 50; x60.l = 50; x61.l = 50; x62.l = 50; x63.l = 50; x64.l = 50; x65.l = 50; x66.l = 50; x67.l = 50; x68.l = 50; x69.l = 50; x70.l = 50; x71.l = 50; x72.l = 50; x73.l = 50; x74.l = 50; x75.l = 50; x76.l = 50; x77.l = 50; x78.l = 50; x79.l = 50; x80.l = 50; x81.l = 50; x82.l = 50; x83.l = 50; x84.l = 50; x85.l = 50; x86.l = 50; x87.l = 100; x88.l = 0.2; x89.l = 0.2; x90.l = 0.2; x91.l = 0.2; x92.l = 1; x93.l = 1; x94.l = 1; x95.l = 1; x96.l = 1; x97.l = 400; x98.l = 400; x99.l = 400; x100.l = 400; x101.l = 400; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91