MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex8_4_7
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 28.29951889 (ANTIGONE) 24.84386572 (BARON) 28.71179495 (COUENNE) 29.04368078 (LINDO) 26.42490135 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Esposito, W R and Floudas, C A, Global Optimization in Parameter Estimation of Nonlinear Algebraic Models via the Error-in-Variables Approach, Industrial and Engineering Chemistry Research, 37:5, 1998, 1841-1858. Kim, I, Liebman, M J, and Edgar, T F, Robust Error-in-Variables Estimation Using Nonlinear Programming Techniques, AIChE Journal, 36:7, 1990, 985-993. |
Sourceⓘ | Test Problem ex8.4.7 of Chapter 8 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 62 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 62 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 50 |
#Nonlinear Nonzeros in Objectiveⓘ | 50 |
#Constraintsⓘ | 40 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 30 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 10 |
Operands in Gen. Nonlin. Functionsⓘ | div exp mul |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 140 |
#Nonlinear Nonzeros in Jacobianⓘ | 90 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 113 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 51 |
#Blocks in Hessian of Lagrangianⓘ | 41 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 12 |
Average blocksize in Hessian of Lagrangianⓘ | 1.512195 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-02 |
Maximal coefficientⓘ | 1.0000e+03 |
Infeasibility of initial pointⓘ | 4.446 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 41 41 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 63 63 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 191 51 140 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,objvar; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41; e1.. -(sqr((-98.71) + 100*x1) + sqr((-89.06) + 100*x2) + sqr((-11.57) + 100*x3) + sqr((-547.47) + x4) + sqr((-663.48) + x5) + sqr((-100.03) + 100*x6) + sqr((-83.5) + 100*x7) + sqr((-13.8) + 100*x8) + sqr((-531.77) + x9) + sqr( (-676.04) + x10) + sqr((-100.39) + 100*x11) + sqr((-82.55) + 100*x12) + sqr((-18.5) + 100*x13) + sqr((-512.21) + x14) + sqr((-684.81) + x15) + sqr((-97.6) + 100*x16) + sqr((-80.2) + 100*x17) + sqr((-20.05) + 100*x18) + sqr((-490.59) + x19) + sqr((-695.47) + x20) + sqr((-101.29) + 100*x21) + sqr((-75.2) + 100*x22) + sqr((-24.2) + 100*x23) + sqr((-464.67) + x24) + sqr((-703.69) + x25) + sqr((-100.83) + 100*x26) + sqr((-71.93) + 100* x27) + sqr((-27.39) + 100*x28) + sqr((-438.47) + x29) + sqr((-714.9) + x30 ) + sqr((-100.75) + 100*x31) + sqr((-68.61) + 100*x32) + sqr((-32.15) + 100*x33) + sqr((-408.04) + x34) + sqr((-726.09) + x35) + sqr((-99.94) + 100*x36) + sqr((-63.88) + 100*x37) + sqr((-37.41) + 100*x38) + sqr((- 375.56) + x39) + sqr((-735.44) + x40) + sqr((-100.07) + 100*x41) + sqr((- 59.7) + 100*x42) + sqr((-39.26) + 100*x43) + sqr((-340.26) + x44) + sqr((- 745.7) + x45) + sqr((-99.73) + 100*x46) + sqr((-55.8) + 100*x47) + sqr((- 47.03) + 100*x48) + sqr((-306.55) + x49) + sqr((-753.94) + x50)) + objvar =E= 0; e2.. (-x53*x2) - 0.01*x2 + 0.01*x1 =E= 0; e3.. (-x54*x7) - 0.01*x7 + 0.01*x6 =E= 0; e4.. (-x55*x12) - 0.01*x12 + 0.01*x11 =E= 0; e5.. (-x56*x17) - 0.01*x17 + 0.01*x16 =E= 0; e6.. (-x57*x22) - 0.01*x22 + 0.01*x21 =E= 0; e7.. (-x58*x27) - 0.01*x27 + 0.01*x26 =E= 0; e8.. (-x59*x32) - 0.01*x32 + 0.01*x31 =E= 0; e9.. (-x60*x37) - 0.01*x37 + 0.01*x36 =E= 0; e10.. (-x61*x42) - 0.01*x42 + 0.01*x41 =E= 0; e11.. (-x62*x47) - 0.01*x47 + 0.01*x46 =E= 0; e12.. x53*x2 - 0.01*x3 =E= 0; e13.. x54*x7 - 0.01*x8 =E= 0; e14.. x55*x12 - 0.01*x13 =E= 0; e15.. x56*x17 - 0.01*x18 =E= 0; e16.. x57*x22 - 0.01*x23 =E= 0; e17.. x58*x27 - 0.01*x28 =E= 0; e18.. x59*x32 - 0.01*x33 =E= 0; e19.. x60*x37 - 0.01*x38 =E= 0; e20.. x61*x42 - 0.01*x43 =E= 0; e21.. x62*x47 - 0.01*x48 =E= 0; e22.. 1000*x53*x2 + 0.01*x4 - 0.01*x5 =E= 0; e23.. 1000*x54*x7 + 0.01*x9 - 0.01*x10 =E= 0; e24.. 1000*x55*x12 + 0.01*x14 - 0.01*x15 =E= 0; e25.. 1000*x56*x17 + 0.01*x19 - 0.01*x20 =E= 0; e26.. 1000*x57*x22 + 0.01*x24 - 0.01*x25 =E= 0; e27.. 1000*x58*x27 + 0.01*x29 - 0.01*x30 =E= 0; e28.. 1000*x59*x32 + 0.01*x34 - 0.01*x35 =E= 0; e29.. 1000*x60*x37 + 0.01*x39 - 0.01*x40 =E= 0; e30.. 1000*x61*x42 + 0.01*x44 - 0.01*x45 =E= 0; e31.. 1000*x62*x47 + 0.01*x49 - 0.01*x50 =E= 0; e32.. exp(-(-1 + 800/x5)*x52)*x51 - x53 =E= 0; e33.. exp(-(-1 + 800/x10)*x52)*x51 - x54 =E= 0; e34.. exp(-(-1 + 800/x15)*x52)*x51 - x55 =E= 0; e35.. exp(-(-1 + 800/x20)*x52)*x51 - x56 =E= 0; e36.. exp(-(-1 + 800/x25)*x52)*x51 - x57 =E= 0; e37.. exp(-(-1 + 800/x30)*x52)*x51 - x58 =E= 0; e38.. exp(-(-1 + 800/x35)*x52)*x51 - x59 =E= 0; e39.. exp(-(-1 + 800/x40)*x52)*x51 - x60 =E= 0; e40.. exp(-(-1 + 800/x45)*x52)*x51 - x61 =E= 0; e41.. exp(-(-1 + 800/x50)*x52)*x51 - x62 =E= 0; * set non-default bounds x1.lo = 0.9571; x1.up = 1.0171; x2.lo = 0.8606; x2.up = 0.9206; x3.lo = 0.0857; x3.up = 0.1457; x4.lo = 544.47; x4.up = 550.47; x5.lo = 660.48; x5.up = 666.48; x6.lo = 0.9703; x6.up = 1.0303; x7.lo = 0.805; x7.up = 0.865; x8.lo = 0.108; x8.up = 0.168; x9.lo = 528.77; x9.up = 534.77; x10.lo = 673.04; x10.up = 679.04; x11.lo = 0.9739; x11.up = 1.0339; x12.lo = 0.7955; x12.up = 0.8555; x13.lo = 0.155; x13.up = 0.215; x14.lo = 509.21; x14.up = 515.21; x15.lo = 681.81; x15.up = 687.81; x16.lo = 0.946; x16.up = 1.006; x17.lo = 0.772; x17.up = 0.832; x18.lo = 0.1705; x18.up = 0.2305; x19.lo = 487.59; x19.up = 493.59; x20.lo = 692.47; x20.up = 698.47; x21.lo = 0.9829; x21.up = 1.0429; x22.lo = 0.722; x22.up = 0.782; x23.lo = 0.212; x23.up = 0.272; x24.lo = 461.67; x24.up = 467.67; x25.lo = 700.69; x25.up = 706.69; x26.lo = 0.9783; x26.up = 1.0383; x27.lo = 0.6893; x27.up = 0.7493; x28.lo = 0.2439; x28.up = 0.3039; x29.lo = 435.47; x29.up = 441.47; x30.lo = 711.9; x30.up = 717.9; x31.lo = 0.9775; x31.up = 1.0375; x32.lo = 0.6561; x32.up = 0.7161; x33.lo = 0.2915; x33.up = 0.3515; x34.lo = 405.04; x34.up = 411.04; x35.lo = 723.09; x35.up = 729.09; x36.lo = 0.9694; x36.up = 1.0294; x37.lo = 0.6088; x37.up = 0.6688; x38.lo = 0.3441; x38.up = 0.4041; x39.lo = 372.56; x39.up = 378.56; x40.lo = 732.44; x40.up = 738.44; x41.lo = 0.9707; x41.up = 1.0307; x42.lo = 0.567; x42.up = 0.627; x43.lo = 0.3626; x43.up = 0.4226; x44.lo = 337.26; x44.up = 343.26; x45.lo = 742.7; x45.up = 748.7; x46.lo = 0.9673; x46.up = 1.0273; x47.lo = 0.528; x47.up = 0.588; x48.lo = 0.4403; x48.up = 0.5003; x49.lo = 303.55; x49.up = 309.55; x50.lo = 750.94; x50.up = 756.94; x51.lo = 0.0001; x51.up = 0.1; x52.lo = 5; x52.up = 15; * set non-default levels x1.l = 0.96740482792; x2.l = 0.91119600248; x3.l = 0.11872252136; x4.l = 546.276827424; x5.l = 662.233272702; x6.l = 0.98374317202; x7.l = 0.82598983024; x8.l = 0.15937622082; x9.l = 529.172682338; x10.l = 676.041264014; x11.l = 1.03378705762; x12.l = 0.83022400268; x13.l = 0.21446798234; x14.l = 513.783502802; x15.l = 682.594154898; x16.l = 0.98438312554; x17.l = 0.78157107184; x18.l = 0.18550483198; x19.l = 491.603571654; x20.l = 695.082138286; x21.l = 1.00448201596; x22.l = 0.74308648208; x23.l = 0.2198894954; x24.l = 462.570610728; x25.l = 704.2246819; x26.l = 1.02815356872; x27.l = 0.70314894428; x28.l = 0.2838440676; x29.l = 440.125145636; x30.l = 713.721950862; x31.l = 0.98412953746; x32.l = 0.68624309196; x33.l = 0.30111036572; x34.l = 410.274773866; x35.l = 724.68068727; x36.l = 0.98654885932; x37.l = 0.64443735532; x38.l = 0.38746314426; x39.l = 376.329492062; x40.l = 735.22278719; x41.l = 0.99549841964; x42.l = 0.57406172142; x43.l = 0.38145273602; x44.l = 337.539309084; x45.l = 744.731301632; x46.l = 0.97822597558; x47.l = 0.56674362762; x48.l = 0.47394473282; x49.l = 308.16977032; x50.l = 752.726835184; x51.l = 0.02; x52.l = 12.5; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91