MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance ex9_2_8

Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
1.50000000 p1 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
1.50000000 (ANTIGONE)
1.50000000 (BARON)
1.50000000 (COUENNE)
1.50000000 (LINDO)
1.50000000 (SCIP)
References Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999.
Yezza, A, First-Order Necessary Optimality Conditions for General Bilevel Programming Problems, Journal of Optimization Theory and Applications, 89:1, 1996, 189-219.
Source Test Problem ex9.2.8 of Chapter 9 of Floudas e.a. handbook
Added to library 31 Jul 2001
Problem type QCQP
#Variables 6
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 6
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type quadratic
Objective curvature indefinite
#Nonzeros in Objective 2
#Nonlinear Nonzeros in Objective 2
#Constraints 5
#Linear Constraints 3
#Quadratic Constraints 2
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 11
#Nonlinear Nonzeros in Jacobian 4
#Nonzeros in (Upper-Left) Hessian of Lagrangian 6
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 3
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 2
Average blocksize in Hessian of Lagrangian 2.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e+00
Maximal coefficient 4.0000e+00
Infeasibility of initial point 1
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          6        6        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          7        7        0        0        0        0        0        0
*  FX      2
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         14        8        6        0
*
*  Solve m using NLP minimizing objvar;


Variables  objvar,x2,x3,x4,x5,x6,x7;

Positive Variables  x2,x3,x4,x5;

Equations  e1,e2,e3,e4,e5,e6;


e1.. 3*x3 - 4*x2*x3 + 2*x2 - objvar =E= -1;

e2..  - x3 + x4 =E= 0;

e3..    x3 + x5 =E= 1;

e4.. x6*x4 =E= 0;

e5.. x7*x5 =E= 0;

e6..    4*x2 - x6 + x7 =E= 1;

* set non-default bounds
x2.up = 1;
x4.up = 20;
x5.up = 20;
x6.fx = 0;
x7.fx = 0;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0