MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance fac2
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 331837498.19999999 (ALPHAECP) 331837498.19999999 (ANTIGONE) 331837498.19999999 (BARON) 331837498.19999999 (BONMIN) 331837498.19999999 (COUENNE) 331837498.19999999 (LINDO) 331837498.19999999 (SCIP) 331837498.19999999 (SHOT) |
Sourceⓘ | MINOPT Model Library model facility2.dat |
Applicationⓘ | Multi-commodity capacity facility location-allocation |
Added to libraryⓘ | 01 May 2001 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 66 |
#Binary Variablesⓘ | 12 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 54 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 57 |
#Nonlinear Nonzeros in Objectiveⓘ | 54 |
#Constraintsⓘ | 33 |
#Linear Constraintsⓘ | 33 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | vcpower |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 159 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 972 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 54 |
#Blocks in Hessian of Lagrangianⓘ | 3 |
Minimal blocksize in Hessian of Lagrangianⓘ | 18 |
Maximal blocksize in Hessian of Lagrangianⓘ | 18 |
Average blocksize in Hessian of Lagrangianⓘ | 18.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 2.4814e+06 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 34 22 3 9 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 67 55 12 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 217 163 54 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54; Binary Variables b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34; e1.. -(276.28*(x1 + x2 + x3 + x4 + x5 + x6 + x19 + x20 + x21 + x22 + x23 + x24 + x37 + x38 + x39 + x40 + x41 + x42)**2.5 + 792.912*(x7 + x8 + x9 + x10 + x11 + x12 + x25 + x26 + x27 + x28 + x29 + x30 + x43 + x44 + x45 + x46 + x47 + x48)**2.5 + 991.679*(x13 + x14 + x15 + x16 + x17 + x18 + x31 + x32 + x33 + x34 + x35 + x36 + x49 + x50 + x51 + x52 + x53 + x54)**2.5 + 115.274*x1 + 98.5559*x2 + 142.777*x3 + 33.9886*x4 + 163.087*x5 + 10.4376* x6 + 234.406*x7 + 142.066*x8 + 50.6436*x9 + 123.61*x10 + 242.356*x11 + 135.071*x12 + 10.7347*x13 + 56.0272*x14 + 14.912*x15 + 169.218*x16 + 209.028*x17 + 259.29*x18 + 165.41*x19 + 40.7497*x20 + 124.907*x21 + 18.495 *x22 + 95.2789*x23 + 251.899*x24 + 114.185*x25 + 37.8148*x26 + 10.5547*x27 + 52.5162*x28 + 37.4727*x29 + 254.843*x30 + 266.645*x31 + 136.583*x32 + 15.092*x33 + 194.101*x34 + 78.768*x35 + 120.36*x36 + 257.318*x37 + 172.747 *x38 + 142.813*x39 + 251.331*x40 + 15.9113*x41 + 48.8251*x42 + 289.116*x43 + 129.705*x44 + 275.621*x45 + 20.2235*x46 + 253.789*x47 + 56.7474*x48 + 201.646*x49 + 164.573*x50 + 295.157*x51 + 151.474*x52 + 221.794*x53 + 278.304*x54) - 2481400*b64 - 2156460*b65 - 2097730*b66 + objvar =E= 0; e2.. x1 + x3 + x5 + x7 + x9 + x11 + x13 + x15 + x17 =L= 60; e3.. x2 + x4 + x6 + x8 + x10 + x12 + x14 + x16 + x18 =L= 60; e4.. x19 + x21 + x23 + x25 + x27 + x29 + x31 + x33 + x35 =L= 60; e5.. x20 + x22 + x24 + x26 + x28 + x30 + x32 + x34 + x36 =L= 60; e6.. x37 + x39 + x41 + x43 + x45 + x47 + x49 + x51 + x53 =L= 60; e7.. x38 + x40 + x42 + x44 + x46 + x48 + x50 + x52 + x54 =L= 60; e8.. x1 + x19 + x37 - 60*b55 =E= 0; e9.. x2 + x20 + x38 - 60*b55 =E= 0; e10.. x3 + x21 + x39 - 60*b56 =E= 0; e11.. x4 + x22 + x40 - 60*b56 =E= 0; e12.. x5 + x23 + x41 - 60*b57 =E= 0; e13.. x6 + x24 + x42 - 60*b57 =E= 0; e14.. x7 + x25 + x43 - 60*b58 =E= 0; e15.. x8 + x26 + x44 - 60*b58 =E= 0; e16.. x9 + x27 + x45 - 60*b59 =E= 0; e17.. x10 + x28 + x46 - 60*b59 =E= 0; e18.. x11 + x29 + x47 - 60*b60 =E= 0; e19.. x12 + x30 + x48 - 60*b60 =E= 0; e20.. x13 + x31 + x49 - 60*b61 =E= 0; e21.. x14 + x32 + x50 - 60*b61 =E= 0; e22.. x15 + x33 + x51 - 60*b62 =E= 0; e23.. x16 + x34 + x52 - 60*b62 =E= 0; e24.. x17 + x35 + x53 - 60*b63 =E= 0; e25.. x18 + x36 + x54 - 60*b63 =E= 0; e26.. 120*b55 + 120*b56 + 120*b57 - 2749.5*b64 =L= 0; e27.. 120*b58 + 120*b59 + 120*b60 - 2872.94*b65 =L= 0; e28.. 120*b61 + 120*b62 + 120*b63 - 2508.06*b66 =L= 0; e29.. 120*b55 + 120*b56 + 120*b57 - 50*b64 =G= 0; e30.. 120*b58 + 120*b59 + 120*b60 - 50*b65 =G= 0; e31.. 120*b61 + 120*b62 + 120*b63 - 50*b66 =G= 0; e32.. b55 + b58 + b61 =E= 1; e33.. b56 + b59 + b62 =E= 1; e34.. b57 + b60 + b63 =E= 1; * set non-default bounds x1.up = 1000; x2.up = 1000; x3.up = 1000; x4.up = 1000; x5.up = 1000; x6.up = 1000; x7.up = 1000; x8.up = 1000; x9.up = 1000; x10.up = 1000; x11.up = 1000; x12.up = 1000; x13.up = 1000; x14.up = 1000; x15.up = 1000; x16.up = 1000; x17.up = 1000; x18.up = 1000; x19.up = 1000; x20.up = 1000; x21.up = 1000; x22.up = 1000; x23.up = 1000; x24.up = 1000; x25.up = 1000; x26.up = 1000; x27.up = 1000; x28.up = 1000; x29.up = 1000; x30.up = 1000; x31.up = 1000; x32.up = 1000; x33.up = 1000; x34.up = 1000; x35.up = 1000; x36.up = 1000; x37.up = 1000; x38.up = 1000; x39.up = 1000; x40.up = 1000; x41.up = 1000; x42.up = 1000; x43.up = 1000; x44.up = 1000; x45.up = 1000; x46.up = 1000; x47.up = 1000; x48.up = 1000; x49.up = 1000; x50.up = 1000; x51.up = 1000; x52.up = 1000; x53.up = 1000; x54.up = 1000; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91